

Bundesanstalt für Materialforschung und -prüfung (BAM)

Certification Report

Certified Reference Material

BAM-M323

AlFe1

May 2022

Coordinator: Dr. Sebastian Recknagel Bundesanstalt für Materialforschung und -prüfung (BAM) Division 1.6 "Inorganic Reference Materials" Richard-Willstätter-Str. 11 D-12489 Berlin Phone: +49 30 8104 1111 Fax: +49 30 8104 71111 E-mail: sebastian.recknagel@bam.de

Summary

This report describes preparation, analysis and certification of the aluminium alloy reference material BAM-M323.

The following mass fractions and uncertainties have been certified:

Element	Mass fraction ¹⁾ in %	Uncertainty ²⁾ in %
Si	0.147	0.005
Fe	1.000	0.012
Cu	0.0182	0.0004
Mn	0.0471	0.0009
Mg	0.0203	0.0013
Cr	0.0106	0.0003
Ga	0.0141	0.0003
Zn	0.0286	0.0006
Ti	0.0189	0.0006
	in mg/kg	in mg/kg
Ве	5.3	0.3
Bi	15.0	1.7
Ca	17	4
Cd	20.2	0.9
Со	21.3	1.3
Hg	19.9	1.1
Li ³⁾	6.0 ³⁾	0.7
Na ⁴⁾	8.84)	1.4
Ni	92.3	2.7
Pb	44.1	1.3
Sb	40	4
Sn	16.3	0.6
V	89.2	2.8
Zr	49.4	1.3
 Unweighted mean value of the results), each set being oblig measurement. Estimated expanded uncertain confidence of approx. 95 % Measurement. (GUM, ISO/IEC) 	The means of accepted sets of data tained by a different laboratory only U with a coverage factor of k , as defined in the Guide to the Guide 98-3:2008).	ta (consisting of at least 5 single y and/or a different method of x = 2, corresponding to a level of the Expression of Uncertainty in

³⁾ Depending on the individual sample number: $M(Li) = (N-48) \times 0.033161 + 6.0$

⁴⁾ Depending on the individual sample number: $M(Na) = (N-48) \times 0.04788 + 8.8$

Additionally, the mass fraction of B is given for information. The certified reference material (CRM) is available in the form of discs (65 mm diameter and 30 mm height). It is intended for establishing and checking the calibration of optical emission and X-ray

spectrometers (excluding micro-analysis) for the analysis of samples of similar matrix composition. It is also suitable for validation and quality control of wet chemical analysis methods.

This report contains detailed information on the preparation of the CRM as well as on homogeneity investigations and on the analytical methods used for certification analysis. The certified values are based on the results of eight laboratories which participated in the certification inter-laboratory comparison.

Content

Page	ē
Summary	3
List of abbreviations	6
1. Introduction	7
2. Companies/laboratories involved	7
3. Candidate material	7
4. Homogeneity testing	8
5. Characterisation study1	0
5.1 Analytical methods10 5.2 Analytical results and statistical evaluation1	0 2
6. Instructions for users and stability4	3
7. Metrological Traceability	4
8. Information on and purchase of the CRM44	4
9. References	4
Annex 1: Calculation of uncertainty contribution of potential inhomogeneity (length), SOES4	5
Annex 2: Calculation of uncertainty contribution of potential inhomogeneity (area)6	9

List of abbreviations

(if not explained elsewhere)

AFS	atomic fluorescence spectrometry
CRM	certified reference material
CVAAS	cold vapour atomic absorption spectrometry
FAAS	flame atomic absorption spectrometry
ETAAS	Electrothermal atomic absorption spectrometry
ICP-OES	inductively coupled plasma optical emission spectrometry
ICP-MS	inductively coupled plasma mass spectrometry
SOES	spark optical emission spectrometry
XRF	X-ray fluorescence spectrometry
Μ	mean value
n	number of accepted data sets
S	standard deviation of an individual data set
Sм	standard deviation of laboratory means
S rel	relative standard deviation
S _i	square root of mean of variances of data sets under repeatability conditions
Mi	single result
I	ICP-OES (Tables 2 – 25)
I(R)	ICP-OES, revised value (Tables 2 – 25)
IMS	ICP-MS (Tables 2 – 25)
А	
	FAAS (Tables 2 – 25)
EA	FAAS (Tables 2 – 25) ETAAS (Tables 2 – 25)
EA FE	FAAS (Tables 2 – 25) ETAAS (Tables 2 – 25) flame emission spectrometry (Tables 2 – 25)
EA FE P	FAAS (Tables 2 – 25) ETAAS (Tables 2 – 25) flame emission spectrometry (Tables 2 – 25) spectrophotometry (Tables 2 – 25)
EA FE P -s	FAAS (Tables 2 – 25) ETAAS (Tables 2 – 25) flame emission spectrometry (Tables 2 – 25) spectrophotometry (Tables 2 – 25) dissolution in acid (Tables 2 – 25)

1. Introduction

In the metal-producing and metal-working industry mainly spark emission spectrometry (SOES) and X-ray fluorescence spectrometry (XRF) are used for reception inspection of raw materials, e.g. scrap, for quality control of end products and production control. These time-saving analytical techniques require suitable reference materials for calibration and recalibration. The certified reference material BAM-M323 is based on the aluminium alloy AlFe1, which has a lot of technical applications.

The CRM was produced in close cooperation with the working group "Aluminium" of the Committee of Chemists of the Society of Metallurgists und Miners (GDMB). Since all the laboratories participating in this certification project are highly experienced with aluminium analysis and had already participated in earlier inter-laboratory comparisons, there was no preceding round robin for qualification necessary.

Certification was carried out on the basis of ISO 17034 [1] and the relevant ISO-Guides [2, 3].

2. Companies/laboratories involved

Manufacturing of the material:

- Constellium, Centre de Recherches de Voreppe, Voreppe, France

Test for homogeneity:

- Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
- Constellium, Centre de Recherches de Voreppe, Voreppe, France

Participants in the certification inter-laboratory comparison:

AMAG Austria Metall AG, Ranshofen, Austria Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany Constellium, Centre de Recherches de Voreppe, Voreppe, France Speira GmbH, R&D, Bonn, Germany Hydro Aluminium Rolled Products GmbH, Hamburg, Germany Łukasiewicz Research Network – Institute of Non-Ferrous Metals, Gliwice, Poland revierlabor, Essen, Germany TRIMET Aluminium SE, Essen, Germany

Statistical evaluation of the data:

– Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany

3. Candidate material

3. Candidate material

The candidate material was produced by Constellium, Centre de Recherches de Voreppe, Voreppe, France. About 500 kg of an aluminium melt were doped with the desired elements. The melt was cast into six billets (A - F) with a length of 4450 mm each. 250 mm on both ends of each billet were discarded. The rods were cut into segments of 800 mm length. Between the segments 15-mm discs (A1, A2, A3, A5, A5, B1, B2, ..., F4, F5) were taken for homogeneity testing (see Fig. 1).

Fig. 1: Preparation of the rods cast (all figures in mm)

In total, 576 discs with a diameter of ca. 65 mm and 30 mm height were obtained.

4. Homogeneity testing

Possible reasons for an inhomogeneous distribution of elements in the raw material may be a change of the composition of the melt during the casting procedure because some elements may volatize or because of possible segregation during the solidification of the material. Since the raw material was produced by casting of a rod, concentration gradients can occur over the length of the rod (axial) as well as over the area of the rod (radial, see Fig. 2):

Fig. 2: Axial and radial composition gradient

Therefore, it is necessary to investigate the raw material for both axial and radial inhomogeneities. Radial homogeneity testing of the candidate material using spark emission spectrometry was performed at Constellium, Centre de Recherches de Voreppe on the discs taken from the rods as shown in Fig. 1. In total 30 discs were investigated (five sparks equidistant from the centre), this corresponding to ca. 5.5 % of the whole batch.

The estimate of analyte-specific inhomogeneity contribution u_{bb} to be included into the total uncertainty budget was calculated according to ISO Guide 35 [3] using Eq. (1) and Eq. (2):

$$s_{\rm bb} = \sqrt{\frac{MS_{\rm among} - MS_{\rm within}}{n}} \tag{1}$$

$$u_{\rm bb}^* = \sqrt{\frac{MS_{\rm within}}{n}} \sqrt[4]{\frac{2}{N(n-1)}} \tag{2}$$

where:

- *MS*_{among} mean of squared deviations between discs (from 1-way ANOVA, see Annex 1)
- MSwithin mean of squared deviations within one disc (from 1-way ANOVA)
- *n* number of replicate measurements per disc
- *N* number of discs selected for homogeneity study

 s_{bb} signifies the between-discs standard deviation whereas U_{bb}^{*} denotes the maximum heterogeneity that can potentially be hidden by an insufficient repeatability of the applied measurement method (which has to be considered as the minimum uncertainty contribution). In any case the larger of the two values was used as $u_{bb}(1)$. Eq. (1) does not apply if MS_{within} is larger than MS_{among} .

For the elements Li and Na a decrease of the mass fraction over the length of the rods was observed. This is a result of the low boiling points of the two elements which result in losses from the melt during the melting process. The homogeneity test shows a more or less linear decrease of the two elements over the length of the rods. Therefore, the mass fractions of the two elements in the certificate are given as functions of the sample number which determines the position in the rod.

These functions are calculated based on the spark emission results from homogeneity test and wet chemical results from one laboratory which determined Li and Na on samples taken over the length of the rods (see Tables 18 and 19, Lab. 9/FE resp. Lab. 9/EA):

$$M_x = (N_x - 48) \cdot \frac{\Delta}{n} \cdot M \tag{3}$$

with

- M_x : Mass fraction of Disc x
- *M* : Mass fraction obtained from certification interlaboratory comparison
- N_x : individual number of disc representing its position in the rod (1 < N_x < 96)
- n : number of discs per rod (n = 96)
- Δ : Mean difference of mass fractions over the length of the rods (calculated from the data of SOES and Lab. 9/EA)
 - ∆ (Li) = 3.1835
 - Δ (Na) = 4.5965

In addition to the tests performed over the length of the rods three discs were tested for homogeneity over the area (possible segregation from the outer part to the centre). To perform this test SOES analysis was carried out in circles (outer circle: 8 sparks, mean circle: 8 sparks, inner circle: 8 sparks; centre: 3 sparks).

The analyte-specific within-disc uncertainty component $u_{bb}(2)$ was calculated in the same way as for the total batch. To calculate the necessary data an unbalanced ANOVA was carried out taking into account that the number of single measurements is different for the centre. The middle of the three values obtained as $u_{bb}(2)$ was used for the calculation of the total uncertainty.

Annexes 1 and 2 show the results of the homogeneity calculations.

5. Characterisation study

5.1 Analytical methods

Eight laboratories participated in the certification inter-laboratory comparison. All laboratories were highly experienced in the analysis of aluminium and aluminium alloys and participated successfully in former certification inter-laboratory comparisons. For some elements part of the laboratories used more than one analytical method reporting more than one data set.

The laboratories were asked to analyse six subsamples. They were free to choose any suitable analytical method. Table 1 shows the analytical methods used by the participating laboratories.

For all analytical methods where a calibration was necessary this calibration was performed using liquid standard solutions. All participating laboratories were asked to use only standard solutions prepared from pure metals or stoichiometric compounds or well checked commercial calibration solutions.

Lab- No.	Element	Sample mass	Sample pretreatment	Analytical method
1*	Si, Fe, Cu, Mn, Mg, Cr, Ga, Zn, Ti, Ni, V	0.5 g	Dissolution with NaOH	ICP-OES, commercial mono- element solution (Merck)
	B, Be, Bi, Ca, Cd, Co, Hg, Li, Na, Pb, Sb, Sn, Zr	0.5 g	Dissolution with HNO ₃ /HCl	ICP-OES, commercial mono- element solution (Merck)
2*	Si, Fe, Cu, Mg, Cr, V	0.5 g	Dissolution with NaOH	ICP-OES, calibration with pure metals or pure chemicals, matrix matching with pure Al (5N5)
	Mn, Zn, Ti, Be, Ca, Co, Ni	0.5 g	Dissolution with HNO ₃ /HF	ICP-OES, calibration with pure metals or chemicals, matrix matching with pure Al (5N5)
	B, Hg, Pb, Sn	0.5 g	Dissolution with HCI/HNO ₃ /HF	ICP-MS, calibration with pure metals or pure chemicals, matrix matching with pure Al (5N5)
	Ga, Bi, Cd, Li, Sb, Zr	0.5 g	Dissolution with HNO ₃ /HF	ICP-MS, commercial mono-element solution (Merck certipur), matrix matching with pure Al (5N5)
	Na	0.5 g	Dissolution with HCI/HNO ₃ /HF	ICP-OES, calibration with Na ₂ CO ₃ , matrix matching with pure AI (5N5)
3*	Si, Fe, Cu, Mn, Mg, Cr, Zn, Ti, Be, Bi, Cd, Co, Ni, Pb, Sb, Sn, V, Zr	0.1 g	Dissolution with NaOH	ICP-OES, commercial mono- element solution
4	Si	0.5 g	Dissolution with NaOH	Spectrophotometry, commercial mono-element solution, matrix matching with pure Al (Merck, Ultrascientific)
	Fe	0.2 g	Dissolution with HNO ₃ /HCl	ICP-OES, commercial mono- element solutions, matrix matching with pure Al (Merck, Ultrascientific)
	Cu, Mn, Mg, Cr, Ga, Ti, Zn, Be, Bi, Ca, Cd, Co, Li, Na, Ni, Pb, Sb, Sn, V, Zr	1 g	Dissolution with HNO ₃ /HCl	ICP-OES, commercial mono- element solutions, matrix matching with pure Al (Merck, Ultrascientific)

Table 1: Analytical procedures used by the participating laboratories

*accredited acc. to ISO IEC 17025

Lab- No.	Element	Sample mass	Sample pretreatment	Analytical method
5*	Si, Fe, Cu, Mn, Mg, Cr, Ga, Ti, Zn, Bi, Ca, Cd, Co, Li, Pb	0.5 g	Dissolution with NaOH	ICP-OES, commercial mono- element solutions (Merck)
	Ni, Sb, Sn, V	0.5 g	Dissolution with NaOH	ICP-OES, commercial mono- element solutions (Labkings)
	Ве	0.5 g	Dissolution with NaOH	ICP-OES, commercial mono- element solutions (Inorganic Ventures)
6	Si, Fe, Cu, Mn, Mg, Cr, Ga, Zn, Ti, B, Be, Bi, Cd, Co, Li, Ni, Pb, Sn, V, Zr	0.5 g	Dissolution with NaOH	ICP-OES, calibration with pure metals or pure chemicals, matrix matching with pure Al
	Ca, Na, Sb	0.5 g	Dissolution with HCl	ICP-OES, calibration with pure metals or pure chemicals, matrix matching with pure Al
7*	Si, Fe, Cu, Mn, Mg, Cr, Ga, Zn, Ti, Be, Bi, Cd, Co, Hg, Li, Na, Ni, Pb, Sb, Sn, V, Zr	0.5 g	Dissolution with HCl/HNO ₃ /HF	ICP-OES, calibration with matrix matched standards, commercial multi-element standard solutions (Merck, Perkin Elmer)
	Cr, Ga, Zn, Ti, Be, Bi, Cd, Co, Li, Na, Ni, Pb, Sb, Sn, V, Zr	0.5 g	Dissolution with HNO ₃ /HF	ICP-MS, with matrix matched standards, commercial mono- element standard solutions (Merck, Perkin Elmer)
	Mg, Cr, Ga, Zn, Ti, Sn, V, Zr, Be, Bi, Cd, Co, Li, Ni, Pb, Sb, Sn, V, Zr	1 g	Dissolution with HCl/HNO ₃ /HF	ICP-MS, with matrix matched standards, commercial mono- element standard solutions (Merck, Perkin Elmer)
9*	Si, Mn, Zr, V	0.25 g	Dissolution with NaOH	Spectrophotometry, calibration with commercial mono-element solutions (Merck)
	Fe, Ti	0.5 g	Dissolution with HCI/H_2O_2	Spectrophotometry, calibration with commercial mono-element solutions (Merck)
	Na	0.25 g	Dissolution with HCI/HNO ₃ /HF	ETAAS, calibration with commercial mono-element solution (Merck)
	Li	0.25 g	Dissolution with HCI/HNO ₃ /HF	Atomic emission spectrometry, calibration with commercial mono- element solution (Merck)
	Fe, Cu, Mn, Mg, Zn	1 g	Dissolution with HCl/H ₂ O ₂	FAAS, calibration with commercial mono-element solution (Merck)
	Cu, Mn, Mg, Cr, Ga, Zn, Ti, B, Be, Bi, Cd, Co, Ga, Li, Na, Ni, Pb, Sn, V, Zr	1 g	Dissolution with HCl/HNO ₃ , Addition of HF and mannite	ICP-OES, calibration with matrix matched standards, commercial mono-element solutions
	Si, Fe, Cu, Mn, Mg, Cr, Ti, Be, Bi, Cd, Co, Li	0.25 g	Dissolution with NaOH	ICP-OES, calibration with matrix matched standards, commercial mono-element solution
	Hg	0.5 g	Dissolution with HCI/HNO ₃ /HF	CVAAS, calibration with commercial mono-element solution (Merck)
	Hg	0.5 g	Dissolution with HCI/HNO ₃ /HF	AFS, calibration with commercial mono-element solution (Merck)

Table 1 (cont.): Analytical procedures used by the participating laboratories

*accredited acc. to ISO IEC 17025

5.2 Analytical results and statistical evaluation

The analytical results of the inter-laboratory certification comparison are listed in Tables 2 to 25. These tables show the single results (M_i) of each laboratory, the respective laboratories' mean values (M), absolute and relative intra-laboratory standard deviation (*s* and *s*_{rel}, respectively), the standard deviation of laboratory means (*s*_M), and in addition

the square root of mean of variances of data sets under repeatability conditions (\bar{s}_i) where *n* is the number of accepted data sets. The continuous line marks the certified value (mean of the laboratories' means), the broken lines mark the standard deviation, calculated from the laboratories' means.

In the related figures for each laboratory its mean value and single standard deviation is given. Outliers which have been excluded after consultation with the resp. laboratory are highlighted in yellow.

Lab./Meth	3/I-a	7/I-s_2	7/I-s_1	1/I-a	9/P	9/I-a	6/I-a	2/I-a	4/P	5/I-a_2	5/I-a_1		
M _i [%]	0.136	0.139	0.139	0.143	0.147	0.147	0.151	0.1501	0.151	0.157	0.159		п
	0.136	0.138	0.137	0.144	0.145	0.147	0.152	0.1498	0.152	0.156	0.157		11
	0.135	0.135	0.139	0.142	0.146	0.155	0.150	0.1499	0.152	0.158	0.159		
	0.135	0.131	0.139	0.144	0.146	0.147	0.151	0.1505	0.152	0.156	0.158		
	0.135	0.141	0.141	0.143	0.146	0.148	0.146	0.1510	0.151	0.157	0.158		
	0.136	0.138	0.137	0.148	0.146	0.152	0.150	0.1510	0.151	0.157	0.157		
<u>M</u> [%]	0.1355	0.1369	0.1388	0.1440	0.1461	0.1493	0.1501	0.1504	0.1515	0.1569	0.1579		0.1470
<i>s</i> [%]	0.0005	0.0033	0.0015	0.0022	0.0006	0.0035	0.0021	0.0005	0.0005	0.0009	0.0007	<i>s</i> м[%]	0.0076
												<i>s</i> _i [%]	0.0018
Srol	0.00404	0.02436	0.01067	0.01501	0.00438	0.02311	0.01386	0.00359	0.00362	0.00603	0.00447		0.05167

Table 2: Results for Si

Table 3: Results for Fe

Lab./Meth	5/I-a_2	1/I-a	9/I-a	2/I-a	4/I-s	7/I-s_1	9/A-s	5/I-a_1	3/I-a	9/P	6/I-s	7/I-s_2		
M _i [%]	0.985	1.005	1.002	0.9982	1.000	0.999	1.005	1.001	1.001	1.000	1.010	1.056		п
	0.992	0.998	1.003	0.9976	0.999	0.999	0.994	1.000	1.003	1.008	1.007	1.035		11
	0.996	0.991	1.005	0.9997	1.000	1.015	1.007	1.003	1.003	1.004	1.003	1.032		
	0.996	0.989	1.003	0.9945	1.000	0.995	0.998	1.005	1.004	1.004	1.007	1.031		
	0.996	0.992	0.976	0.9952	0.993	0.999	1.009	1.004	1.010	1.011	1.008	1.025		
	0.994	0.999	0.985	0.9948	0.996	1.001	0.998	1.003	1.002	1.012	1.008	0.946		
							0.998							
M [0/]	0.003	0.005	0.006	0.007	0.009	1 001	1 001	1 003	1 004	1 006	1 007	1.021		1 000
M [%]	0.995	0.995	0.990	0.997	0.998	1.001	1.001	1.005	1.004	1.000	1.007	1.021		1.000
<i>s</i> [%]	0.0043	0.0061	0.0121	0.0021	0.0029	0.0070	0.0057	0.0019	0.0032	0.0046	0.0022	0.0380	<i>s</i> _м [%]	0.0047
													<i>s</i> _i [%]	0.0055
s _{rel}	0.00429	0.00612	0.01218	0.00214	0.00290	0.00698	0.00566	0.00192	0.00318	0.00458	0.00216	0.03727		0.00466

Table 4: Results for Cu

Lab./Meth	7/I-s_1	3/I-a	5/I-a_1	4/I-s	9/A-s	9/I-s	1/I-a	6/I-a	5/I-a_2	2/I-a	9/I-a	7/I-s_2		
<i>M</i> _i [%]	0.0167	0.017	0.0176	0.0182	0.0184	0.0191	0.0183	0.0185	0.0184	0.0186	0.019	0.0189		п
	0.0170	0.017	0.0176	0.0180	0.0179	0.0182	0.0186	0.0185	0.0186	0.0185	0.019	0.0190		12
	0.0175	0.017	0.0176	0.0179	0.0185	0.0175	0.0184	0.0183	0.0185	0.0185	0.018	0.0183		
	0.0168	0.017	0.0177	0.0183	0.0180	0.0188	0.0184	0.0184	0.0185	0.0186	0.018	0.0186		
	0.0169	0.018	0.0176	0.0182	0.0181	0.0177	0.0185	0.0187	0.0185	0.0185	0.019	0.0184		
	0.0172	0.017	0.0176	0.0183	0.0183	0.0185	0.0184	0.0185	0.0186	0.0185		0.0198		
					0.0185									
M F0/ 1	0.0170	0.0170	0.0176	0.0192	0.0100	0.0192	0.0104	0.0105	0.0105	0.0105	0.0196	0.0199		0.0192
M [%]	0.0170	0.0172	0.0176	0.0182	0.0182	0.0183	0.0184	0.0185	0.0185	0.0185	0.0186	0.0188		0.0182
<i>s</i> [%]	0.0003	0.0004	0.0000	0.0002	0.0002	0.0006	0.0001	0.0001	0.0001	0.0000	0.0005	0.0005	<i>s</i> _М [%]	0.0006
													<i>s</i> _i [%]	0.0003
S _{rel}	0.01720	0.02378	0.00138	0.00905	0.01334	0.03329	0.00560	0.00725	0.00477	0.00215	0.02945	0.02902		0.03193

Table 5: Results for Mn

Lab./Meth.	7/I-s_1	9/A-s	9/I-s	9/I-a	6/I-a	9/P	5/I-a_1	7/I-s_2	2/I-s	1/I-a	4/I-s	3/I-a	5/I-a_2		
<i>M</i> _i [%]	0.0442	0.0464	0.0475	0.048	0.0466	0.0465	0.0469	0.0471	0.0475	0.0476	0.0484	0.049	0.0488		п
	0.0447	0.0462	0.0460	0.046	0.0465	0.0466	0.0469	0.0478	0.0476	0.0475	0.0475	0.049	0.0495		13
	0.0437	0.0456	0.0438	0.046	0.0462	0.0467	0.0471	0.0472	0.0476	0.0476	0.0483	0.049	0.0495		
	0.0447	0.0459	0.0466	0.046	0.0469	0.0467	0.0472	0.0471	0.0476	0.0481	0.0482	0.049	0.0494		
	0.0449	0.0456	0.0448	0.046	0.0464	0.0464	0.0471	0.0472	0.0477	0.0479	0.0471	0.049	0.0495		
	0.0451	0.0458	0.0461	0.046	0.0463	0.0468	0.0471	0.0475	0.0476	0.0480	0.0489	0.049	0.0494		
		0.0453				0.0467									
						0.0464									
M [%]	0.0446	0.0458	0.0458	0.0463	0.0465	0.0466	0.0470	0.0473	0.0476	0.0478	0.0481	0.0490	0.0493		0.0471
<i>s</i> [%]	0.0005	0.0004	0.0013	0.0008	0.0003	0.0001	0.0001	0.0003	0.0000	0.0002	0.0007	0.0000	0.0003	<i>s</i> м[%]	0.00134
														<i>s</i> _i [%]	0.00052
S _{rel}	0.01151	0.00816	0.02848	0.01762	0.00553	0.00293	0.00239	0.00589	0.00084	0.00520	0.01359	0.00000	0.00529	. –	0.02838

Table 6: Results for Mg

Lab./Meth	3/I-a	7/IMS	7/I-s_1	5/I-a_2	9/I-a	5/I-a_1	4/I-s	9/I-s	7/I-s_2	1/I-a	2/I-a	6/I-a	9/A-s		
M _i [%]	0.017	0.0190	0.0186	0.0186	0.021	0.0202	0.0204	0.0208	0.0207	0.0208	0.0212	0.0226	0.0252		п
	0.017	0.0168	0.0188	0.0187	0.020	0.0202	0.0201	0.0205	0.0204	0.0208	0.0211	0.0239	0.0257		13
	0.017	0.0156	0.0190	0.0189	0.020	0.0202	0.0205	0.0196	0.0208	0.0210	0.0212	0.0233	0.0258		
	0.017	0.0190	0.0185	0.0188	0.020	0.0203	0.0202	0.0206	0.0202	0.0210	0.0210	0.0235	0.0256		
	0.017	0.0174	0.0182	0.0189	0.020	0.0202	0.0200	0.0200	0.0206	0.0209	0.0210	0.0224	0.0256		
	0.017	0.0162	0.0184	0.0188	0.020	0.0202	0.0201	0.0207	0.0204	0.0212	0.0210	0.0225	0.0248		
													0.0248		
A4 50/ 3	0.0170	0.0170	0.0105	0.0100	0.0000	0.0000	0.0000	0.0004	0.0205	0.0010	0.0011	0.0000	0.0050		
M [%]	0.0170	0.01/3	0.0186	0.0188	0.0202	0.0202	0.0202	0.0204	0.0205	0.0210	0.0211	0.0230	0.0253		0.0203
<i>s</i> [%]	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	<i>s</i> м[%]	0.0022
														<i>s</i> _i [%]	0.0005
s _{rel}	0.0000	0.0821	0.0154	0.0059	0.0202	0.0013	0.0096	0.0241	0.0109	0.0072	0.0037	0.0272	0.0168		0.10927

Table 7: Results for Cr

Lab./Meth	7/I-s_1(R)	6/I-a	9/I-s	9/I-a	4/I-s	2/I-s	1/I-a	5/I-a_2	3/I-a	5/I-a_1	7/I-s_2(R)		
M _i [%]	0.0099	0.0103	0.0106	0.012	0.0105	0.0106	0.0106	0.0109	0.011	0.0111	0.0105		п
	0.0098	0.0103	0.0104	0.010	0.0104	0.0106	0.0106	0.0109	0.011	0.0111	0.0105		11
	0.0095	0.0103	0.0100	0.011	0.0105	0.0106	0.0106	0.0110	0.011	0.0111	0.0114		
	0.0097	0.0103	0.0105	0.010	0.0105	0.0106	0.0107	0.0110	0.011	0.0111	0.0114		
	0.0096	0.0103	0.0102	0.010	0.0105	0.0105	0.0106	0.0110	0.011	0.0111	0.0116		
	0.0096	0.0103	0.0111	0.010	0.0106	0.0105	0.0106	0.0109	0.011	0.0111	0.0114		
M [0/-]	0.0097	0.0102	0.0105	0.0105	0.0105	0.0105	0.0106	0.0109	0.0110	0.0111	0.0111		0.0106
M [%]	0.0097	0.0105	0.0105	0.0105	0.0105	0.0105	0.0100	0.0109	0.0110	0.0111	0.0111		0.0100
<i>s</i> [%]	0.0001	0.0000	0.0004	0.0008	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0005	<i>s</i> _М [%]	0.0004
												<i>s</i> _i [%]	0.0003
s _{rel}	0.01520	0.00310	0.03736	0.07968	0.00602	0.00485	0.00385	0.00368	0.00000	0.00261	0.04461		0.03980

Table 8: Results for Ga

Lab./Meth.	7/I-s_1	7/IMS_1	9/I-s	7/IMS_2	5/I-a_1	7/I-s_2	1/I-a	4/I-s	2/IMS-s	6/I-s	5/I-a_2		
<i>M</i> _i [%]	0.0133	0.0131	0.0141	0.0140	0.0139	0.0147	0.0144	0.0146	0.0144	0.0147	0.0147		п
	0.0135	0.0138	0.0138	0.0138	0.0138	0.0144	0.0145	0.0142	0.0145	0.0148	0.0148		11
	0.0136	0.0129	0.0132	0.0135	0.0139	0.0142	0.0143	0.0145	0.0145	0.0146	0.0148		
	0.0132	0.0133	0.0139	0.0142	0.0139	0.0142	0.0144	0.0145	0.0144	0.0145	0.0148		
	0.0131	0.0143	0.0135	0.0137	0.0139	0.0138	0.0145	0.0145	0.0146	0.0148	0.0147		
	0.0132	0.0142	0.0137	0.0134	0.0138	0.0148	0.0144	0.0144	0.0144	0.0146	0.0147		
M [%]	0.0133	0.0136	0.0137	0.0138	0.0139	0.0144	0.0144	0.0145	0.0145	0.0147	0.0148		0.0141
<i>s</i> [%]	0.0002	0.0006	0.0003	0.0003	0.0001	0.0004	0.0001	0.0001	0.0001	0.0001	0.0000	<i>s</i> м[%]	0.0005
												s _i [%]	0.0003
S _{rel}	0.01457	0.04313	0.02363	0.02187	0.00362	0.02560	0.00522	0.00954	0.00625	0.00790	0.00206		0.03445

Table 9: Results for Zn

Lab./Meth	3/I-a	5/I-a_1	7/I-s_2	7/I-s_1	7/IMS_1	9/I-a	9/A-s	7/IMS_2	1/I-a	2/I-s	9/I-s	5/I-a_2	4/I-s	6/I-s		
<i>M</i> _i [%]	0.027	0.0275	0.0296	0.0274	0.0277	0.0291	0.0293	0.0284	0.0288	0.0291	0.0302	0.0289	0.0290	0.0306		п
	0.027	0.0276	0.0271	0.0280	0.0289	0.0284	0.0283	0.0288	0.0286	0.0290	0.0293	0.0289	0.0297	0.0305		14
	0.027	0.0275	0.0273	0.0283	0.0278	0.0283	0.0284	0.0284	0.0287	0.0289	0.0277	0.0294	0.0294	0.0307		
	0.027	0.0277	0.0281	0.0283	0.0282	0.0286	0.0280	0.0281	0.0289	0.0291	0.0296	0.0291	0.0294	0.0305		
	0.027	0.0275	0.0270	0.0279	0.0278	0.0281	0.0279	0.0293	0.0286	0.0290	0.0283	0.0292	0.0295	0.0305		
	0.028	0.0274	0.0276	0.0281	0.0282	0.0280	0.0285	0.0288	0.0290	0.0291	0.0293	0.0296	0.0292	0.0303		
							0.0288									
M [%]	0.0272	0.0275	0.0278	0.0280	0.0281	0.0284	0.0285	0.0286	0.0288	0.0290	0.0291	0.0292	0.0294	0.0305		0.0286
<i>s</i> [%]	0.0004	0.0001	0.0010	0.0003	0.0004	0.0004	0.0005	0.0004	0.0002	0.0001	0.0009	0.0003	0.0002	0.0001	<i>s</i> м[%]	0.0009
															<i>s</i> _i [%]	0.0005
Srel	0.01503	0.00381	0.03508	0.01195	0.01592	0.01397	0.01598	0.01476	0.00568	0.00232	0.03145	0.00920	0.00825	0.00398		0.02988

Table 10: Results for Ti

Lab./Meth.	9/I-a	7/IMS_1	2/I-s	1/I-a	4/I-s	6/I-s	9/I-s	5/I-a_1	5/I-a_2	7/I-s_2	3/I-a	7/I-s_1(R)	9/P		
M _i [%]	0.0175	0.0176	0.0186	0.0184	0.0189	0.0188	0.0194	0.0191	0.0192	0.0188	0.021	0.0198	0.0206		п
	0.0175	0.0178	0.0186	0.0185	0.0189	0.0188	0.0189	0.0192	0.0193	0.0194	0.019	0.0205	0.0192		13
	0.0174	0.0166	0.0186	0.0185	0.0188	0.0189	0.0181	0.0192	0.0193	0.0196	0.020	0.0197	0.0201		
	0.0173	0.0171	0.0184	0.0187	0.0189	0.0189	0.0192	0.0192	0.0193	0.0191	0.019	0.0192	0.0195		
	0.0173	0.0176	0.0183	0.0188	0.0188	0.0191	0.0185	0.0192	0.0193	0.0196	0.019	0.0204	0.0205		
	0.0174	0.0177	0.0185	0.0185	0.0189	0.0190	0.0198	0.0192	0.0193	0.0199	0.019	0.0196	0.0200		
M [%]	0.0174	0.0174	0.0185	0.0186	0.0189	0.0189	0.0190	0.0192	0.0193	0.0194	0.0195	0.0199	0.0200		0.0189
<i>s</i> [%]	0.00009	0.00046	0.00010	0.00015	0.00005	0.00010	0.00062	0.00004	0.00007	0.00039	0.00084	0.00050	0.00055	<i>s</i> м[%]	0.0008
														<i>s</i> _i [%]	0.0004
S _{rel}	0.00514	0.02646	0.00539	0.00811	0.00274	0.00547	0.03254	0.00193	0.00338	0.02036	0.04291	0.02500	0.02735		0.04235

Table 11: Results for B

Lab./Meth.	9/I-s	1/I-s	6/I-s	2/IMS-s		
M _i [mg/kg]	2.2	2.1	2.67	3.27		п
	2.1	2.1	2.72	3.22		4
	1.9	2.0	2.56	3.33		
	2.2	2.0	2.72	3.17		
	2.1	2.0	2.55	3.19		
	2.2	2.8	2.89	3.19		
M [mg/kg]	2.12	2.15	2.69	3.23		2.55
<i>s</i> [mg/kg]	0.117	0.311	0.122	0.059	s _M [mg/kg]	0.52
					$\bar{s_i}$ [mg/kg]	0.18
s _{rel}	0.055	0.144	0.046	0.018		0.21
4.0						
					Ŧ	

Table 12: Results for Be

Lab./Meth.	1/I-s	5/I-a_1	7/IMS_2	6/I-a	9/I-s	9/I-a	5/I-a_2	2/I-s	4/I-s	7/I-s_2	3/I-a	7/IMS_1		
M _i [mg/kg]	4.6	4.85	4.9	5.03	5.47	5.5	5.42	5.51	5.7	6.0	6.0	5.3		п
	4.6	4.87	4.9	5.07	5.35	5.5	5.45	5.53	5.7	6.0	6.0	6.0		12
	4.5	4.88	4.7	5.02	5.12	5.5	5.49	5.52	5.6	5.0	5.0	5.8		
	4.4	4.89	5.1	5.04	5.38	5.4	5.46	5.52	5.6	5.0	6.0	5.9		
	4.5	4.87	5.0	5.02	5.22	5.4	5.47	5.53	5.5	6.0	5.0	5.6		
	4.5	4.86	4.7	5.02	5.48	5.4	5.46	5.53	5.8	6.0	6.0	5.9		
M [mg/kg]	4.52	4.87	4.88	5.03	5.34	5.46	5.46	5.52	5.65	5.67	5.67	5.75		5.32
<i>s</i> [mg/kg]	0.07	0.01	0.16	0.02	0.14	0.05	0.02	0.01	0.10	0.52	0.52	0.26	<i>s</i> _м [mg/kg]	0.40
													<i>s</i> ¯₁ [mg/kg]	0.24
S _{rel}	0.016	0.003	0.033	0.004	0.027	0.009	0.004	0.002	0.019	0.091	0.091	0.045		0.074
70-							•			•		•		
7.0														
											_	_		
K ^C											T	Ī		-
δμ U														
ت ا										Ī				†
u						_	т	-	•	1				1 I

Table 13: Results for Bi

Lab./	'Meth.	5/I-a_2	7/I-s_2	5/I-a_1	7/I-s_1	2/IMS-s	1/I-s	7/IMS_2	4/I-s	9/I-s	6/I-a	9/I-a	7/IMS_1		
M _i [n	ng/kg]	11.8	14.0	13.6	14.7	15.1	15.8	15.4	15.4	16.9	16.1	17.0	17.8		п
		12.0	12.0	14.1	14.6	14.9	15.5	15.0	15.1	15.9	16.1	16.6	18.1		12
		12.3	12.0	14.2	14.0	14.9	14.9	14.7	15.6	15.5	17.1	16.4	17.2		
		14.5	13.0	13.5	13.7	14.9	15.4	15.5	15.3	16.4	15.4	18.9	17.5		
		12.8	16.0	13.4	13.4	14.8	14.4	14,,7	15.2	13.6	16.4	16.6	17.8		
		13.6	12.0	12.3	14.9	14.7	13.8	14.7	15.6	15.1	15.5	15.7	18.3		
<i>M</i> [m	g/kg]	12.8	13.2	13.5	14.2	14.9	14.9	15.1	15.4	15.6	16.1	16.9	17.8		15.0
s[m	a/kal	1.03	1.60	0.66	0.62	0.12	0.74	0.38	0.21	1.14	0.61	1.10	0.40	<i>s</i> м[ma/ka]	1.47
-	5. 51													\overline{s}_i [mg/kg]	0.83
9	rol	0.080	0.122	0.049	0.043	0.008	0.049	0.025	0.013	0.073	0.038	0.065	0.022	-16 57 51	0.098
	20.0														
	20.0 T														
	18.0 -												-	ſ	Į ∣
[6)															±
4/6											T	Ŧ			-
E	16.0 -											+			
c								T	Т	Ŧ	1	1			
tiol			т		Т		Ŧ	•	1						-
ad	140-			Т	•			T			-				
1 c					t										-
asi		↓	Ť	1											
E	12.0														
Bi	12.0	T	1												
	10.0 +										1				
		5/I-a_2	7/I-s_2	5/I-a_	1 7/I-:	s_1 2/I	MS-s	1/I-s	7/IMS_2	4/I-s	9/I-s	6/I-a	a 9/	I-a 7/II	MS_1
								Laboratory							

Lab	./Meth	. 4/I-s	7/I-s_1	2/I-s	6/I-s	1/I-s		
Mi	[mg/kg]	14.6	15.14	17.5	17.9	18.9		п
		14.6	13.91	17.5	17.7	19.5		5
		14.5	15.18	17.1	17.7	19.0		
		13.7	14.86	17.0	18.4	18.1		
		13.1	14.26	17.1	19.2	18.9		
		13.6	15.47	16.8	19.6	18.6		
МΓ	ma/ka	1 14.0	14.8	17.2	18.4	18.8		16.6
s	ma/kal	0.64	0.60	0.28	0.82	0.47	s™ [ma/ka]	2.14
01		0.01	0.00	0.20	0.02	0	<u>s</u> [ma/ka]	0.59
	Srel	0.045	0.040	0.016	0.045	0.025	01[0.129
	22							
	22 T							
_	20 -							
kg]						T	I	
/бі						•	1	
<u>ل</u>	18 -					l		,
Ę				Ŧ				
ctic								
rac	16 -							
- SS			T					
nas		F						
ے م	14 -	•	Ŧ					
Ŭ		1						
	12 🗕		1	1	1	1		4
		4/I-s	7/I-s_1	2/I-	s (6/I-s	1/I-s	
				Laborat	ory			

Table 14: Results for Ca

i

Table 15: Results for Cd

Lab./Meth.	7/I-s_1	9/I-a	4/I-s	7/I-s_2	7/IMS_1	7/IMS_2	9/I-s	2/IMS-s	1/I-s	6/I-s	5/I-a_2	5/I-a_1(R)	3/I-a		
M _i [mg/kg]	18.5	18.8	19.8	20.0	19.5	20.2	21.1	20.6	20.9	21.6	20.9	22.4	25		n
	18.7	18.9	19.9	20.0	20.3	20.5	20.3	20.7	21.2	20.8	21.2	22.3	25		12
	19.4	18.5	19.5	19.0	20.0	20.1	19.5	20.9	20.6	20.9	21.2	22.3	25		
	17.8	18.5	19.1	20.0	19.6	20.0	20.6	20.5	20.2	20.6	21.1	22.5	25		
	18.0	18.6	19.9	20.0	19.6	19.9	19.7	20.3	20.4	21.1	21.1	22.4	25		
	18.6	18.8	19.6	20.0	20.1	20.2	20.3	20.4	20.2	20.9	21.1	22.4	26		
M [ma/ka]	18.5	18.7	19.6	19.8	19.9	20.2	20.3	20.6	20.6	21.0	21.1	22.4	25.2		20.2
s[ma/ka]	0.55	0.17	0.31	0.41	0.33	0.21	0.59	0.20	0.40	0.32	0.11	0.09	0.41	s., [ma/ka]	1.05
5 [mg/ kg]	0.55	0.17	0.51	0.11	0.55	0.21	0.55	0.20	0.10	0.52	0.11	0.05	0.11	\overline{s} [mg/kg]	0.34
Su	0.0296	0 0093	0.0157	0.0206	0.0165	0.0103	0 0294	0 0098	0.0192	0.0153	0.0050	0.0042	0.0162	51[[[[]]/[[]]]	0.0519
Srei	0.0290	0.0055	0.0137	0.0200	0.0105	0.0105	0.0251	0.0050	0.0152	0.0135	0.0050	0.0012	0.0102	+	0.0515
^{27.0} T															
25.0 -															↓
															-
6															
≚ 23.0 -													-		
Ĕ													•		
21.0 -										т	·····	*			-
io				T	T		÷		<u>+</u>	t	-				-
			<u> </u>	Ī	I			1							-
£ 19.0 -	Ţ	Ŧ													
ass	T														
E 17.0 -															
CG															
15.0															
15.0 +	7/L c 1	0/1 2	4/1 0	7/1 0	2 7/114	C 1 7/1	MCD	0/1 c		1/L c	6/1.6	5/1 2 2	5/1 ~ 1	(0) 2	/1 2
	//1-5_1	9/1-a	4/1-S	//I-S_	_∠ //1™	5_1 //1	M3_2	9/1-5	2/1113-5	1/1-5	0/1-5	5/1-a_2	5/1-a_1	.(K) 3,	/1-d
							Labora	tory							

Table 16: Results for Co

Lab./Meth.	9/I-a	5/I-a_2	7/IMS_2	7/IMS_1	5/I-a_1	4/I-s	9/I-s	6/I-s	2/I-s	7/I-s_2	1/I-s	7/I-s_1	3/I-a		
M _i [mg/kg]	17.9	19.4	20.6	19.8	20.1	21.0	22.2	21.7	22.1	22.0	23.1	23.0	25		п
	18.1	19.8	19.5	20.2	20.1	20.9	21.7	21.4	22.3	22.0	23.3	23.6	25		13
	18.0	19.4	18.8	19.0	20.1	21.2	20.7	22.0	22.0	22.0	22.7	25.0	24		
	17.5	19.7	20.9	19.4	20.2	20.8	21.9	21.9	22.1	22.0	22.4	23.7	25		
	18.1	19.8	19.6	20.4	20.2	20.9	21.2	21.7	22.1	22.0	22.5	22.7	24		
	18.0	19.4	18.9	20.9	20.2	20.5	22.0	21.9	22.1	23.0	22.2	23.3	24		
M [mg/kg]	17.9	19.6	19.7	20.0	20.1	20.9	21.6	21.8	22.1	22.2	22.7	23.6	24.5		21.3
<i>s</i> [mg/kg]	0.22	0.20	0.87	0.69	0.06	0.23	0.55	0.19	0.08	0.41	0.45	0.81	0.55	<i>s</i> _м [mg/kg]	1.81
														$\bar{s_i}$ [mg/kg]	0.48
Srel	0.0120	0.0100	0.0439	0.0347	0.0029	0.0111	0.0253	0.0090	0.0035	0.0184	0.0197	0.0345	0.0224		0.0848

Lab./Meth. 2/IMS-s 1/I-s 9/AFS 7/I-s_1 9/CVAAS 6/I-a M_i [mg/kg] 18.4 19.81 20.2 20.39 18.6 21.1 п 17.1 21.76 20.4 19.97 6 22.1 21.1 18.1 19.86 20.3 20.59 21.0 21.6 18.0 18.09 19.3 20.56 23.9 21.3 18.0 19.7 18.4 19.87 20.01 20.6 18.1 19.26 19.1 20.3 *M* [mg/kg] 17.9 19.8 19.8 20.3 20.8 21.0 19.9 0.425 1.190 0.539 0.297 2.138 0.258 *s*_M [mg/kg] *s* [mg/kg] 1.10 $\bar{s_i}$ [mg/kg] 1.05 0.024 0.060 0.027 0.015 0.103 0.012 0.055 s_{rel} 25.0 23.0 Hg mass fraction in mg/kg 21.0 -----19.0 t 17.0 15.0 2/IMS-s 6/I-a 1/I-s 9/AFS 7/I-s_1 9/CVAAS Laboratory

Table 17: Results for Hg

Table 18: Results for Li

Lab./M	leth.	9/FE(B1)	9/FE(D2)	9/FE(A3)	9/FE(C4)	9/FE(E5)	4/I-s	7/IMS_2	9/I-a	7/IMS_1	5/I-a_2	9/FE	9/I-s	5/I-a_1	7/I-s_1	6/I-a	2/IMS-s	1/I-s		
M _i [mg	J/kg]	6.96	6.14	5.77	5.78	3.91	4.2	5.0	4.8	5.1	5.4	7.0	6.2	6.8	6.7	7.3	7.2	8.2		п
		6.95	6.11	5.73	5.75	3.96	4.3	4.5	4.8	5.5	5.6	6.1	6.1	6.7	7.0	6.8	7.3	8.4		12
		7.01	6.09	5.76	5.74	3.90	4.2	4.2	4.6	4.8	5.5	5.7	5.8	6.8	6.0	6.8	7.1	8.1		
		6.96	6.12	5.74	5.74	3.86	4.2	5.2	4.9	5.1	5.6	5.8	6.1	6.8	6.9	6.9	7.1	8.0		
							4.1	4.7	4.6	5.6	5.4	3.9	5.9	6.7	6.9	6.9	7.2	8.1		
							4.2	4.3	4.7	5.5	5.6		6.1	6.7	7.1	7.0	7.3	8.0		
M [mg	/kg]	7.0	6.1	5.7	5.8	3.9	4.2	4.7	4.7	5.3	5.5	5.7	6.0	6.7	6.8	7.0	7.2	8.1		5.99
<i>s</i> [mg/	′kg]	0.03	0.02	0.02	0.02	0.04	0.06	0.39	0.13	0.31	0.07	1.12	0.17	0.07	0.39	0.20	0.08	0.13	<i>s</i> _м [mg/kg]	1.19
																			s _i [mg/kg]	0.39
Srel		0.004	0.004	0.003	0.003	0.011	0.015	0.085	0.028	0.060	0.013	0.196	0.028	0.010	0.058	0.029	0.012	0.016		0.20
9	.0 -							•		•										
																			Ŧ	
8	.0 -																		1	
[6y																			T	
/6 7	.0 -	•											т		-	I	ł		x	
<u> </u>															*	I				
ioi 6	.0 -		٠					-						ī						
ract				•	•						т		•	-						
ssf											+	-								
e s	.0 .									······										
									1	_			_							
4	.0 -							-												
3	.0 🖵			1	1		 			ı		-		1						
		9/FE(B1)	9/FE(D2)	9/FE(A3)	9/FE(C4)	9/FE(E5)		4/I-s	7/IMS_2	9/I-a	7/IMS_1	5/I-a_2	9/FE	9/I-s	5/I-a_	1 7/I-9	s_1 6/I	-a 2/I	MS-s 1/I	-s
										Laboratory										

Table 19: Results for Na

Lab./Met	h. 9/EA(B1) 9/EA(D2)	9/EA(A3)	9/EA(C4)	9/EA(E5)		4/I-s	9/I-s	9/EA	7/I-s_1	2/I-s	1/I-s		
M _i [mg/kg	9.88	8.55	8.55	8.07	5.76		6.6	7.2	10.7	9.7	9.9	10.6		п
	10.70	8.94	8.52	8.53	5.61		7.0	6.4	8.9	10.4	9.8	10.8		6
	10.15	8.88	8.39	8.33	5.79		6.4	6.1	8.5	9.8	10.3	10.4		
	12.24	9.15	8.66	8.37	5.70		6.9	6.5	8.3	10.3	10.3	10.3		
							5./	8.0	5.7	10.0	10.4	10.4		
							6.0	9.1		9.5	10.3	10.5		
M [mg/kg	g] 10.7	8.9	8.5	8.3	5.7		6.4	7.2	8.4	9.9	10.1	10.5		8.8
s[mg/kg]] 1.06	0.25	0.11	0.19	0.08		0.51	1.14	1.80	0.36	0.25	0.18	<i>s</i> _м [mg/kg]	1.69
													\overline{s}_{i} [mg/kg]	0.91
S _{rel}	0.098	0.028	0.013	0.023	0.014		0.079	0.158	0.213	0.036	0.024	0.017		0.192
13.0 -	· · · · · · · · · · · · · · · · · · ·													
10.0														
	_													
<u> </u>													_	
/kg										т	T	Ţ	•••••• 1	
шд											1	T		
		т												
tion.		<u> </u>	Ŧ	т										
ac				1										
s fir														
- 0.7 ge							 T							
E							+			Ŧ				
Na							T	-	L					
ГО														
5.0 -	0/EA(B1)				Q/EA(E5)	1	//I_c	0/	I-c		7/I-c 1	2/1-	= 1/T_4	
	J/LA(DI)	S/LA(DZ)	J/LA(AS)	5/LA(C4)	5/LA(E5)		4/1-5	9/	1-2	3/LA	//1-5_1	2/1-	5 1/1-5	>
						Laboratory								

Lab./Meth. 5/I-a_2 7/IMS_1 7/IMS_2 5/I-a_1 4/I-s 1/I-a 7/I-s_1 3/I-a 9/I-s 7/I-s_2 2/I-s 6/I-a M_i [mg/kg] 87.6 87.0 89.2 87.0 92.5 90 91.6 91.9 93.7 94.9 98.0 99.2 п 88.6 88.8 89.4 88.0 90.1 88 91.9 93.0 94.2 99.0 99.4 98.2 12 93.7 98.3 98.9 88.1 87.6 91.2 89.0 86.2 91 91.7 91.3 95.0 87.9 88.3 88.0 87.0 90.9 93 91.3 92.1 94.1 97.5 97.3 99.3 86.3 88.3 88.9 88.0 87.4 93 91.4 91.2 94.9 93.2 100.1 99.4 99.0 94 97.4 87.4 88.0 87.3 94.1 91.3 91.2 94.6 100.2 99.1 89.0 89.7 90.2 91.5 96.2 M [mg/kg] 87.7 88.0 91.5 91.8 94.2 98.9 99.0 92.3 *s* _м [mg/kg] 3.94 *s* [mg/kg] 0.78 0.65 1.32 4.63 3.00 2.26 0.25 0.72 0.49 2.15 1.19 0.42 $\bar{s_i}$ [mg/kg] 1.95 0.009 0.007 0.015 0.052 0.033 0.025 0.003 0.008 0.005 0.022 0.012 0.004 0.043 S_{rel} 105.0 100.0 ₹ Ni mass fraction in mg/kg 95.0 Ŧ • Ŧ 90.0 85.0 80.0 7/I-s_2 2/I-s 7/IMS_1 7/IMS_2 4/I-s 1/I-a 7/I-s_1 3/I-a 9/I-s 6/I-a 5/I-a_2 5/I-a_1 Laboratory

Table 20: Results for Ni

Lab./Meth.	9/I-s	4/I-s	7/IMS_2	7/I-s_1(R)	2/IMS-s	5/I-a_1	7/IMS_1	1/I-s	7/I-s_2(R)	6/I-a		
M _i [mg/kg]	43.3	42.5	43.9	44.0	43.2	46.0	43.8	46.5	46	45.8		п
	42.4	43.2	43.0	40.8	43.3	43.3	44.7	46.5	49	47.7		10
	41.5	42.6	42.1	43.8	43.2	43.9	43.8	45.3	42	47.3		
	42.2	42.4	43.9	42.5	43.8	43.8	43.3	44.1	45	47.3		
	40.5	41.6	42.8	44.1	43.3	45.3	44.7	45.0	49	47.3		
	42.3	42.4	42.1	43.9	43.5	42.9	45.8	44.4	44	45.9		
M [42.0	42.5	42.0	42.2	42.4	44.2		45.0	45.0	46.0		
м [mg/кg]	42.0	42.5	43.0	43.2	43.4	44.2	44.4	45.3	45.8	46.9		44.1
<i>s</i> [mg/kg]	0.98	0.51	0.81	1.32	0.23	1.20	0.90	1.02	2.79	0.83	<i>s</i> _м [mg/kg]	1.56
											<i>s</i> _i [mg/kg]	1.24
S _{rel}	0.0233	0.0121	0.0188	0.0306	0.0053	0.0272	0.0203	0.0225	0.0608	0.0177		0.035

Table 21: Results for Pb

Table 22: Results for Sb

Lab./Meth. 5/I-a_1 6/I-a(R) 7/IMS_1 9/I-s 7/IMS_2 1/I-s 5/I-a_2 7/I-s_1 2/IMS-s 4/I-s 9/I-a M_i[mg/kg] 15.8 15.6 16.2 17.3 16.0 16.6 14.2 16.1 16.7 16.7 20.3 п 16.5 16.5 10 16.2 15.6 16.1 15.4 16.8 17.6 16.7 16.6 21.3 17.4 15.7 16.2 16.9 16.4 16.6 16.2 17.1 16.6 16.3 18.5 15.3 15.5 15.9 17.0 16.7 16.0 17.6 16.3 16.2 16.4 19.6 16.8 15.3 16.0 17.6 16.3 16.5 19.9 16.3 16.1 16.1 16.1 15.6 15.3 19.9 15.7 16.0 15.5 16.2 16.116.3 16.2 16.4 15.9 16.0 16.1 16.2 16.3 16.4 16.4 16.4 16.5 16.3 M [mg/kg] 19.9 16.4 *s* [mg/kg] 0.54 0.74 0.12 0.93 0.28 0.35 1.45 0.37 0.25 0.15 0.91 *s* _м [mg/kg] 0.21 *s*_i [mg/kg] 0.65 0.023 0.013 0.034 0.046 0.007 0.057 0.017 0.021 0.088 0.015 0.009 0.046 **S**_{rel} 20.5 Sn mass fraction in mg/kg 18.5 16.5

Table 23: Results for Sn

1/I-s

Laboratory

5/I-a_2

7/I-s_1

2/IMS-s

9/I-a

4/I-s

7/IMS_2

9/I-s

14.5

5/I-a_1

6/I-a(R)

7/IMS_1

Lab./Meth. 7/I-s_2(R) 7/I-s_1 5/I-a_1 9/I-s 4/I-s 6/I-a 1/I-a 2/I-a 9/P 5/I-a_2 M_{i} [mg/kg] 84.9 86.9 89.6 87.3 88.5 88.5 89.6 90.8 93.5 98 п 84.3 86.8 87.6 87.2 88.1 88.7 89.1 90.0 93.7 99 10 78.8 89.3 93.8 96 86.9 83.8 88.7 88.3 88.7 89.2 84.3 88.3 89.4 88.0 89.1 88.7 88.2 92.8 96 87.0 82.9 86.7 85.9 89.1 89.0 89.5 89.0 88.0 94.0 95 83.4 86.6 87.9 87.0 87.8 88.5 89.0 91.6 93.4 101 89.5 M [mg/kg] 87.2 88.3 89.1 89.2 83.1 86.8 88.1 88.8 89.6 93.5 97.5 *s* _м [mg/kg] 2.2 2.1 0.4 0.3 1.3 0.4 2.3 3.91 *s* [mg/kg] 0.1 1.10.4 $\bar{s_i}$ [mg/kg] 1.33 0.027 0.002 0.024 0.012 0.005 0.005 0.003 0.015 0.004 0.023 0.044 $\mathbf{s}_{\mathsf{rel}}$ 105 V mass fraction in mg/kg 95 • ₹ ٠ 85 75 9/I-s 4/I-s 6/I-a 9/P 7/I-s_2(R) 7/I-s_1 5/I-a 1 1/I-a 2/I-a 5/I-a 2 Laboratory

Table 24: Results for V

Table 25: Results for Zr

Lab./Meth.	7/I-s_1	7/IMS_2	9/P	7/IMS_1	7/I-s_2	5/I-a_2	6/I-a	5/I-a_1(R) 4/I-s	1/I-a	9/I-s	2/IMS-s	3/I-a		
<i>M</i> _i [mg/kg]	46.2	48.2	48.3	47.8	48	48.4	49.3	49.5	51.8	51.6	53.0	52.1	52		п
	46.8	46.8	48.1	47.4	49	48.8	49.1	49.4	51.1	52.7	52.0	52.4	52		13
	45.7	45.4	47.7	48.2	49	49.1	49.0	49.6	51.8	51.2	50.3	51.9	53		
	47.5	48.3	47.6	45.4	47	48.7	49.4	49.6	50.6	50.7	52.3	51.7	52		
	45.7	46.4	47.6	49.7	47	48.7	49.4	49.5	50.8	50.9	51.3	52.5	52		
	45.9	45.1	47.6	49.0	48	49.1	49.5	49.4	50.9	50.4	51.7	51./	52		
M [mg/kg]	46.3	46.7	47.8	47.9	48.0	48.8	49.3	49.5	51.2	51.2	51.8	52.0	52.2		49.4
<i>s</i> [mg/kg]	0.71	1.35	0.31	1.49	0.89	0.25	0.18	0.11	0.52	0.83	0.90	0.33	0.41	s _M [mg/kg]	2.06
														\overline{s} [mg/kg]	0.76
Srel	0.015	0.029	0.007	0.031	0.019	0.005	0.004	0.002	0.010	0.016	0.017	0.006	0.008		0.042
				•		•			•	•				•	
55 —															
53 -															
kg											т	I	Ŧ	Ŧ	
/6 E1												·····	±	·····	
E 51										T	1	I			
i															
- 49 t					T		Ŧ	Ŧ							
fra		T	Ŧ	+	t										
<u>ଟ</u> ୍ଥ 47 -	т				1										
Ĕ	+			1											
N 45	T	1													
45															
12															
43 +	7/I-s_1	7/IMS_2	9/P	7/IMS_	_1 7/I-s	5_2 5/1	-a_2	6/I-a Laboratory	5/I-a_1(R)	4/I-s	1/I-a	9/I-s	2/IMS-	s 3/I-	a
Using the BAM-software eCerto [4] the data was statistically evaluated to detect outlying values (Grubbs, Nalimov, Dixon, Cochran). The Cochran-test was performed only once. The following results were obtained:

	Si	Cu
Number of data sets	11	12
Scheffe's test (data compatible?)	yes	yes
Snedecor-F-Test and Bartlett-Test	Pooling not allowed	Pooling not allowed
Dixon ($a = 0.05$)		
Dixon ($a = 0.01$)		
Nalimov ($a = 0.05$)		Lab. 7/I-s_1
Nalimov ($a = 0.01$)		
Grubbs (a = 0.05)		
Grubbs (a = 0.01)		
Grubbs Pair ($a = 0.05$)		Labs. 7/I-s_1 and 3
Grubbs Pair ($a = 0.01$)		
Cochran ($a = 0.01$)		
Kolmogorov-Smirnov-Lilliefors Test	Distribution: normal	Distribution: normal
The events we were not were even		

Tab. 26: Outcome of statistical tests on the results obtained for Si and Cu

The outliers were not removed.

Tab. 🛛	27:	Outcome of	statistical	tests on	the	results	obtained	for	Fe
--------	-----	------------	-------------	----------	-----	---------	----------	-----	----

	1 st run	2 nd run
Number of data sets	12	11
Scheffe's test (data compatible?)	yes	yes
Snedecor-F-Test and Bartlett-Test	Pooling not allowed	Pooling not allowed
Dixon ($a = 0.05$)	Lab. 7/I-s_2	
Dixon ($a = 0.01$)		
Nalimov ($a = 0.05$)	Lab. 7/I-s_2	
Nalimov ($a = 0.01$)	Lab. 7/I-s_2	
Grubbs (a = 0.05)	Lab. 7/I-s_2	
Grubbs (a = 0.01)	Lab. 7/I-s_2	
Grubbs Pair ($a = 0.05$)		
Grubbs Pair ($a = 0.01$)		
Cochran ($a = 0.01$)	Lab. 7/I-s_2	
Kolmogorov-Smirnov-Lilliefors Test	Distribution: normal	Distribution: normal

The outlier (Lab. 7/I-s_2) was removed.

	Mn	Mg
Number of data sets	13	13
Scheffe's test (data compatible?)	yes	yes
Snedecor-F-Test and Bartlett-Test	Pooling not allowed	Pooling not allowed
Dixon (a = 0.05)		Lab. 9/A
Dixon ($a = 0.01$)		
Nalimov ($\alpha = 0.05$)		Lab. 9/A
Nalimov ($a = 0.01$)		Lab. 9/A
Grubbs (a = 0.05)		
Grubbs (a = 0.01)		
Grubbs Pair ($a = 0.05$)		
Grubbs Pair ($\alpha = 0.01$)		
Cochran ($a = 0.01$)	Lab. 9/I-s	Lab. 7/IMS
Kolmogorov-Smirnov-Lilliefors Test	Distribution: normal	Distribution: normal

Tab. 28: Outcome of statistical tests on the results obtained for Mn and Mg

The outliers were not removed.

Tab. 29: Outcome of statistical tests on the results obtained for Cr and Ga

	Cr	Ga
Number of data sets	11	11
Scheffe's test (data compatible?)	yes	yes
Snedecor-F-Test and Bartlett-Test	Pooling not allowed	Pooling not allowed
Dixon (a = 0.05)		
Dixon ($a = 0.01$)		
Nalimov ($\alpha = 0.05$)	Lab. 7/I-s_1	
Nalimov ($\alpha = 0.01$)	Lab. 7/I-s_1	
Grubbs (a = 0.05)		
Grubbs (a = 0.01)		
Grubbs Pair ($a = 0.05$)		
Grubbs Pair ($a = 0.01$)		
Cochran ($a = 0.01$)	Lab. 9/I-a	Lab. 7/IMS-1
Kolmogorov-Smirnov-Lilliefors Test	Distribution: normal	Distribution: normal

The outliers were not removed.

Tab. 30: Outcome of statistical tests on the results obtained for Zn and Ti

	Zn	Ti
Number of data sets	14	13
Scheffe's test (data compatible?)	yes	yes
Snedecor-F-Test and Bartlett-Test	Pooling not allowed	Pooling not allowed
Dixon ($a = 0.05$)		
Dixon $(a = 0.01)$		
Nalimov ($a = 0.05$)	Lab. 6	Lab. 9/I-a and 7/IMS
Nalimov ($a = 0.01$)		
Grubbs (a = 0.05)		
Grubbs (a = 0.01)		
Grubbs Pair ($a = 0.05$)		Lab. 9/I-a and 7/IMS
Grubbs Pair ($a = 0.01$)		
Cochran ($a = 0.01$)	Lab. 7/I-s_2	Lab. 3
Kolmogorov-Smirnov-Lilliefors Test	Distribution: normal	Distribution: normal
The outliers were not removed		

The outliers were not removed.

	В	Ве
Number of data sets	4	12
Scheffe's test (data compatible?)	yes	yes
Snedecor-F-Test and Bartlett-Test	Pooling not allowed	Pooling not allowed
Dixon (a = 0.05)		
Dixon ($a = 0.01$)		
Nalimov ($\alpha = 0.05$)		
Nalimov ($a = 0.01$)		
Grubbs (a = 0.05)		
Grubbs (a = 0.01)		
Grubbs Pair ($a = 0.05$)		
Grubbs Pair ($a = 0.01$)		
Cochran ($a = 0.01$)	Lab. 1	Labs. 7/I-2_2 and 3
Kolmogorov-Smirnov-Lilliefors Test	Distribution: normal	Distribution: normal

Tab. 31: Outcome of statistical tests on the results obtained for B and Be

The outliers were not removed.

Tab. 32: Outcome of statistical tests on the results obtained for Bi and Ca

	Bi	Са
Number of data sets	12	5
Scheffe's test (data compatible?)	yes	yes
Snedecor-F-Test and Bartlett-Test	Pooling not allowed	Pooling not allowed
Dixon (a = 0.05)		
Dixon ($a = 0.01$)		
Nalimov ($\alpha = 0.05$)	Lab. 7/IMS_1	
Nalimov ($a = 0.01$)		
Grubbs (a = 0.05)		
Grubbs (a = 0.01)		
Grubbs Pair ($a = 0.05$)		
Grubbs Pair ($a = 0.01$)		
Cochran ($a = 0.01$)		
Kolmogorov-Smirnov-Lilliefors Test	Distribution: normal	Distribution: normal

The outlier was not removed.

Tab. 33: Outcome of statistical tests on the results obtained for Cd

	1 st run	2 nd run
Number of data sets	13	12
Scheffe's test (data compatible?)	yes	yes
Snedecor-F-Test and Bartlett-Test	Pooling not allowed	Pooling not allowed
Dixon ($a = 0.05$)	Lab. 3	
Dixon ($a = 0.01$)	Lab. 3	
Nalimov ($a = 0.05$)	Lab. 3	Lab. 5/I-a_1
Nalimov ($\alpha = 0.01$)	Lab. 3	
Grubbs (a = 0.05)	Lab. 3	
Grubbs ($a = 0.01$)		
Grubbs Pair ($a = 0.05$)		
Grubbs Pair ($a = 0.01$)		
Cochran ($a = 0.01$)		
Kolmogorov-Smirnov-Lilliefors Test	Distribution: normal	Distribution: normal
The outlier (Lab 2 1st rup) was removed		

The outlier (Lab. 3, 1st run) was removed.

	Со	Hg
Number of data sets	12	6
Scheffe's test (data compatible?)	yes	yes
Snedecor-F-Test and Bartlett-Test	Pooling not allowed	Pooling not allowed
Dixon ($a = 0.05$)		
Dixon ($a = 0.01$)		
Nalimov ($\alpha = 0.05$)	Lab. 9/I-a	
Nalimov ($a = 0.01$)		
Grubbs (a = 0.05)		
Grubbs (a = 0.01)		
Grubbs Pair ($a = 0.05$)		
Grubbs Pair ($a = 0.01$)		
Cochran ($a = 0.01$)		Lab. 7/I-s_1
Kolmogorov-Smirnov-Lilliefors Test	Distribution: normal	Distribution: normal

Tab. 34: Outcome of statistical tests on the results obtained for Co and Hg

The outliers were not removed.

Tab. 35: Outcome of statistical tests on the results obtained for Li and Na

	Li	Na
Number of data sets	12	6
Scheffe's test (data compatible?)	yes	yes
Snedecor-F-Test and Bartlett-Test	Pooling not allowed	Pooling not allowed
Dixon ($a = 0.05$)		
Dixon ($a = 0.01$)		
Nalimov ($\alpha = 0.05$)		
Nalimov ($\alpha = 0.01$)		
Grubbs (a = 0.05)		
Grubbs (a = 0.01)		
Grubbs Pair ($a = 0.05$)		
Grubbs Pair ($a = 0.01$)		
Cochran ($a = 0.01$)		
Kolmogorov-Smirnov-Lilliefors Test	Distribution: normal	Distribution: normal

Tab. 36: Outcome of statistical tests on the results obtained for Ni and Pb

	Ni	Pb
Number of data sets	13	11
Scheffe's test (data compatible?)	yes	yes
Snedecor-F-Test and Bartlett-Test	Pooling not allowed	Pooling not allowed
Dixon (a = 0.05)		
Dixon (a = 0.01)		
Nalimov ($a = 0.05$)		
Nalimov ($a = 0.01$)		
Grubbs (a = 0.05)		
Grubbs (a = 0.01)		
Grubbs Pair ($a = 0.05$)		
Grubbs Pair ($a = 0.01$)		
Cochran ($a = 0.01$)	Lab. 3	Lab. 7/I-s_2
Kolmogorov-Smirnov-Lilliefors Test	Distribution: normal	Distribution: normal

The outliers were not removed.

	1 st run	2 nd run
Number of data sets	11	10
Scheffe's test (data compatible?)	yes	yes
Snedecor-F-Test and Bartlett-Test	Pooling not allowed	Pooling not allowed
Dixon (a = 0.05)	Lab. 9/I-a	
Dixon ($a = 0.01$)	Lab. 9/I-a	
Nalimov ($\alpha = 0.05$)	Lab. 9/I-a	Lab. 5/I-a_1
Nalimov ($a = 0.01$)	Lab. 9/I-a	
Grubbs (a = 0.05)	Lab. 9/I-a	
Grubbs (a = 0.01)	Lab. 9/I-a	
Grubbs Pair ($a = 0.05$)		
Grubbs Pair ($a = 0.01$)		
Cochran ($a = 0.01$)	Lab. 5/I-a_2	Lab. 5/I-a_2
Kolmogorov-Smirnov-Lilliefors Test	Distribution: normal	Distribution: normal

Tab. 37: Outcome of statistical tests on the results obtained for Sn

The outlier (Lab 9/I-a) was removed.

Tab. 38: Outcome of statistical tests on the results obtained for Sb and V

	Sb	V
Number of data sets	10	9
Scheffe's test (data compatible?)	yes	yes
Snedecor-F-Test and Bartlett-Test	Pooling not allowed	Pooling not allowed
Dixon ($a = 0.05$)		
Dixon (a = 0.01)		
Nalimov ($\alpha = 0.05$)	Lab. 7/I-s_2	Lab. 7/I-s_2
Nalimov ($a = 0.01$)		
Grubbs (a = 0.05)		
Grubbs (a = 0.01)		
Grubbs Pair ($a = 0.05$)		
Grubbs Pair ($a = 0.01$)		
Cochran ($a = 0.01$)	Lab. 7/I-s_2	
Kolmogorov-Smirnov-Lilliefors Test	Distribution: normal	Distribution: normal

The outliers were not removed.

Tab. 39: Outcome of statistical tests on the results obtained for Zr

	Zr
Number of data sets	13
Scheffe's test (data compatible?)	yes
Snedecor-F-Test and Bartlett-Test	Pooling not allowed
Dixon (a = 0.05)	
Dixon ($a = 0.01$)	
Nalimov ($a = 0.05$)	
Nalimov ($a = 0.01$)	
Grubbs (a = 0.05)	
Grubbs (a = 0.01)	
Grubbs Pair ($a = 0.05$)	
Grubbs Pair ($a = 0.01$)	
Cochran ($a = 0.01$)	
Kolmogorov-Smirnov-Lilliefors Test	Distribution: normal

The certified mass fractions of all elements were calculated as mean of the accepted data sets. These values are given in Table 40.

The resp. combined uncertainties were calculated from the spread resulting from the certification inter-laboratory comparison (u_{ilc}) and the uncertainty contributions from possible inhomogeneity over the length $(u_{bb}(1))$ and over area $(u_{bb}(2))$ of the material using Equation 4.

$$U_{\text{combined}} = \sqrt{u_{ilc}^2 + u_{bb}^2(1) + u_{bb}^2(2)}$$
(4)

with

 $u_{\text{ilc}} = \sqrt{\frac{S_{\text{M}}^2}{n}}$: uncertainty contribution resulting from inter-laboratory comparison

n : number of data sets used for calculating the certified mass fraction of each element

Table 40:	Uncertainty	calculation	$(u_{bb}(rel)$	was	calculated	with	the	data	from	the
homogene	ity test (see	Annex 1 and	2) and us	sed fo	r the calcula	ation d	of ubb	(1) an	$d u_{bb}(2$	<u>2))</u>

M n s_{M} u_{ilc} Length Area $u(\text{comb})$ U	Length	Area
M n S_{M} u_{ilc} Length Area $u(cond)$ U		Area
	0.2945	
% %		0 4022
Si 0.1470 11 0.00760 0.0023 0.0004 0.0007 0.0024 0.0049	0.2045	0.4822
Fe 1.0000 11 0.00406 0.0014 0.0024 0.0052 0.0059 0.0117 Cu 0.0182 12 0.00056 0.0002 0.0001 0.0002 0.0002 0.00040	0.2368	0.5188
	0.5194	0.2043
Mn 0.04/1 13 0.00134 0.0004 0.0001 0.0002 0.0004 0.00085	0.1872	0.3972
Mg 0.0203 13 0.0022 0.0006 0.0002 0.0001 0.0007 0.00130	1.01/3	0.3266
Cr 0.0106 11 0.00042 0.0001 0.0001 0.0000 0.0001 0.00030	0.6882	0.2688
Ga 0.0141 11 0.00049 0.0001 0.0000 0.0000 0.0001 0.00030	0.0783	0.1870
Zn 0.0286 14 0.00085 0.0002 0.0001 0.0001 0.0003 0.00058	0.3716	0.5072
Ti 0.0189 13 0.00080 0.0002 0.0001 0.0001 0.0003 0.00054	0.3694	0.7011
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg		
B 2.55 4 0.523 0.2617 0.2128 0.0452 0.340 0.681	8.3610	1.7739
Be 5.32 12 0.396 0.1143 0.0868 0.0205 0.145 0.290	1.6324	0.3860
Bi 15.0 12 1.470 0.4244 0.4698 0.5659 0.849 1.698	3.1275	3.7677
Ca 16.6 5 2.145 0.9593 1.6792 0.1144 1.937 3.875	10.1156	0.6892
Cd 20.2 12 1.050 0.3030 0.0483 0.2768 0.413 0.826	0.2391	1.3703
Co 21.3 13 1.805 0.5007 0.1617 0.3374 0.625 1.250	0.7593	1.5843
Hg 19.9 6 1.100 0.4489 0.0625 0.2436 0.515 1.029	0.3139	1.2242
Li 5.99 12 1.192 0.3441 0.0155 0.344 0.689	segregation	0.2595
Na 8.78 6 1.687 0.6886 0.0499 0.690 1.381	segregation	0.5684
Ni 92.3 12 3.943 1.1382 0.4340 0.5327 1.330 2.659	0.4702	0.5771
Pb 44.1 10 1.557 0.4923 0.3261 0.1757 0.616 1.232	0.7396	0.3985
Sb 39.5 8 2.404 0.8499 1.1046 1.3601 1.947 3.895	2.7963	3.4433
Sn 16.3 10 0.206 0.0653 0.2309 0.1721 0.295 0.591	1.4164	1.0560
V 89.2 10 3.906 1.2351 0.4349 0.3850 1.365 2.730	0.4876	0.4316
Zr 49.4 13 2.055 0.5700 0.2030 0.1911 0.635 1.269	0.4109	0.3869
$M \cdot u_{bb}(rel)$		
**calculated from u_{bb} (rel): $u_{bb} = \frac{u_{bb}(v_{bb})}{100}$		

The expanded uncertainties *U* are calculated by multiplication of u_{combined} with a coverage factor of k = 2 using Equation 5.

 $U = k \cdot U_{\text{combined}}$

The calculated mass fractions and their resp. expanded uncertainties are given on Page 3 of this report. Rounding was done according to DIN 1333 [5].

In addition to the wet chemical characterisation an accompanying inter-laboratory comparison with spark emission was performed to check if there is agreement between SOES and wet chemistry. Tab. 41 shows the mean values of wet chemical and spark emission results as well as their standard deviations. The data obtained with wet chemistry and SOES are consistent for all elements considering their uncertainties. The data from the spark emission inter-laboratory comparison was not used for the calculation of the certified values.

Element	Wet ch	emical analysis		Spark emission			
	Mass fraction	Stddev.	п	Mass fraction	Stddev.	п	
	in %	in %		in %	in %		
Si	0.147	0.008	11	0.149	0.006	15	
Fe	1.000	0.005	11	1.001	0.003	14	
Cu	0.0182	0.0006	12	0.0186	0.0011	15	
Mn	0.0471	0.0014	13	0.0466	0.0016	14	
Mg	0.0203	0.0022	13	0.0207	0.0025	15	
Cr	0.0106	0.0004	11	0.0102	0.0008	14	
Ga	0.0141	0.0005	11	0.0146	0.0008	11	
Zn	0.0286	0.0009	13	0.0290	0.0011	12	
Ti	0.0189	0.0008	13	0.0187	0.0008	13	
	in mg/kg	in mg/kg		in mg/kg	in mg/kg		
В	2.5	0.6	4	6.0	3.0	11	
Be	5.3	0.4	12	5.7	0.5	12	
Bi	15.0	1.5	12	17.0	4.2	11	
Ca	16.6	2.2	5	15.7	2.4	13	
Cd	20.2	1.1	12	20.7	1.4	12	
Со	21.3	1.9	13	21.8	2.0	11	
Hg	19.9	1.1	6	21.0	2.2	9	
Li	6.0	1.2	12	6.4	1.6	12	
Na	8.8	1.7	6	8.9	2.1	11	
Ni	92.3	4.0	12	89.1	4.1	12	
Pb	44.1	1.6	10	42.4	5.4	12	
Sb	39.5	2.4	8	32.9	12.3	10	
Sn	16.3	0.3	10	16.8	2.9	11	
V	89.2	4.0	9	84.0	7.2	14	
Zr	49.4	2.1	13	49.8	1.3	12	

Tab. 41:	Comparison	wet chemistry	vs. SOES
----------	------------	---------------	----------

6. Instructions for users and stability

The certified reference material BAM-M323 is intended for the calibration and quality control of spark emission and X-ray fluorescence spectrometers used for the analysis of

similar materials. It is also suitable for validation and quality control of wet chemical analysis methods.

The surface of the material should be cleaned by turning or milling before analysis.

An area 8 mm in diameter in the centre of the discs should be avoided for spark optical emission spectrometry.

If chips prepared from the compact material are used for wet chemical analysis, a minimum sample intake of 0.2 g has to be used.

The material will remain stable provided that it is not subjected to excessive heat (eg, during preparation of the working surface).

7. Metrological Traceability

To ensure traceability of the certified mass fractions to the SI (Système International d'Unités) calibration was performed using standard solutions prepared from pure metals or stoichiometric compounds or traceable commercial calibration solutions.

8. Information on and purchase of the CRM

Certified reference material BAM-M323 is supplied by

Bundesanstalt für Materialforschung und -prüfung (BAM) Division 1.6 "Inorganic Reference Materials" Richard-Willstätter-Str. 11, D-12489 Berlin, Germany Phone +49 (0)30 - 8104 2061 Fax: +49 (0)30 - 8104 72061 E-Mail: <u>sales.crm@bam.de</u>

Each disc of BAM-M323 will be distributed together with a detailed certificate containing the certified values and their uncertainties, the mean values and standard deviations of all accepted data sets and information on the analytical methods used and the names of the participating laboratories.

Information on certified reference materials can be obtained from BAM: <u>https://www.bam.de</u>. Tel. +49 30 8104 1111.

9. References

- [1] DIN EN ISO 17034, General requirements for the competence of reference material producers, 2016
- [2] ISO Guide 31, Reference materials Contents of certificates, labels and accompanying documentation, 2015
- [3] ISO Guide 35, Reference materials Guidance for characterization and assessment of homogeneity and stability, 2017
- [4] J. Lisec, eCerto Software, BAM 2021
- [5] DIN 1333:1992-02 Zahlenangaben

Annex 1: Calculation of uncertainty contribution of potential inhomogeneity (length), SOES (u_{bb} (rel.) here means u_{bb} (rel) Length in Table 40)

Silicon:

		2	2		-	
	1	2	3	4	5	
A1	0.1460	0.1455	0.1452	0.1443	0.1472	
A2	0.1460	0.1465	0.1461	0.1468	0.1456	
A3	0.1467	0.1466	0.1460	0.1464	0.1465	
A4	0.1470	0.1463	0.1456	0.1473	0.1464	
A5	0.1483	0.1471	0.1468	0.1466	0.1478	
B1	0.1462	0.1459	0.1459	0.1453	0.1456	
B2	0.1463	0.1478	0.1471	0.1467	0.1472	
B3	0.1465	0.1465	0.1462	0.1467	0.1466	
B4	0.1456	0.1462	0.1457	0.1463	0.1458	
B5	0.1464	0.1462	0.1465	0.1467	0.1467	
C1	0.1458	0.1465	0.1457	0.1460	0.1464	
C2	0.1477	0.1469	0.1473	0.1461	0.1467	
C3	0.1462	0.1459	0.1466	0.1473	0.1459	
C4	0.1466	0.1458	0.1465	0.1472	0.1466	
C5	0.1471	0.1462	0.1467	0.1466	0.1475	
D1	0.1468	0.1463	0.1467	0.1459	0.1458	
D2	0.1463	0.1464	0.1464	0.1464	0.1462	
D3	0.1468	0.1465	0.1470	0.1470	0.1474	
D4	0.1459	0.1470	0.1470	0.1472	0.1467	
D5	0.1474	0.1465	0.1473	0.1464	0.1471	
E1	0.1462	0.1465	0.1469	0.1465	0.1471	
E2	0.1460	0.1469	0.1470	0.1468	0.1475	
E3	0.1463	0.1468	0.1459	0.1457	0.1463	
E4	0.1460	0.1467	0.1462	0.1458	0.1463	
F5	0.1456	0.1466	0.1466	0.1466	0.1469	
F1	0.1463	0.1472	0.1451	0.1464	0.1458	
F2	0.1459	0.1459	0.1464	0.1458	0.1468	
F3	0 1463	0 1467	0 1460	0 1465	0 1461	
F4	0.1477	0.1473	0.1469	0.1464	0.1469	
F5	0 1470	0 1470	0 1478	0 1481	0 1475	
1.5	sums of	dearees of	011170	011101	0111/0	
Source of	sauares	freedom	Mean			critical F-
variation	(SS)	(df)	squares (MS)	F-value	P-value	value
Between group	os 2.734E-05	5 29	9.42687E-07	3.8078121	1.26671E-07	1.562071
Within groups	2.971E-05	5 120	2.47567E-07			
Total	5.705E-05	5 149				
within-sd	0.0004976	5				
<u> </u>						
effective n	4.00					
<i>s</i> _{bb}	0.0004169	1				
<i>u</i> _{bb}	8.939E-05	5				
U _{bb}	0.0004169)				
$u_{bb}(rel.)$	0.284528	3				

Iron:

				-						
		1		2	3		4	5		
A1		0.9823		0.9734	0.9754		0.9721	0.9858		
A2		0.9820		0.9810	0.9801		0.9835	0.9804		
A3		0.9784		0.9736	0.9750		0.9759	0.9824		
A4		0.9748		0.9732	0.9791		0.9812	0.9727		
A5		0.9846		0.9818	0.9772		0.9783	0.9834		
B1		0.9829		0.9781	0.9752		0.9741	0.9726		
B2		0.9767		0.9791	0.9755		0.9718	0.9806		
B3		0.9840		0.9788	0.9786		0.9865	0.9856		
B4		0.9742		0.9834	0.9760		0.9821	0.9740		
B5		0.9746		0.9810	0.9813		0.9842	0.9801		
C1		0.9819		0.9785	0.9740		0.9737	0.9836		
C2		0.9857		0.9822	0.9850		0.9833	0.9827		
C3		0.9833		0.9792	0.9833		0.9844	0.9794		
C4		0.9821		0.9793	0.9772		0.9849	0.9862		
C5		0.9848		0.9768	0.9800		0.9793	0.9844		
D1		0.9787		0.9788	0.9814		0.9779	0.9792		
D2		0.9814		0 9774	0 9796		0 9793	0 9808		
D3		0.9846		0.9838	0 9820		0.9862	0.9866		
D4		0.9830		0.9871	0.9837		0.9819	0.9864		
D5		0.9090		0.9760	0.9097		0.9019	0.9004		
F1		0.9694		0.9752	0.9055		0.9047	0.9801		
E2		0.0004		0.97.92	0.9705		0.9795	0.9001		
E2		0.9701		0.9744	0.9000		0.9000	0.9000		
		0.9010		0.9000	0.9795		0.9705	0.9019		
		0.97.04		0.9700	0.9801		0.9709	0.9792		
		0.9044		0.9793	0.9808		0.9813	0.9813		
		0.9733		0.9833	0.9741		0.9807	0.9769		
		0.9773		0.9791	0.9020		0.9784	0.9630		
		0.9779		0.9704	0.9769		0.9749	0.9739		
		0.9022		0.9606	0.9701		0.9744	0.9760		
ГЭ		0.9/91		0.9778	0.9803		0.9870	0.9841		
		0.9801		0.9790	0.9791		0.9797	0.9809		
Course of		SUMS OF		aegrees of	Maan					aritical E
Source or		Squares		(df)	Mean cauaroc (MC	·)	Evalue	D value		critical r-
Between arou	nc		15	29	3 20873E-0	<u>2</u>	3 0376081	1 16364F	- 05	1 562071
Within groups	μs	0.000950	76 76	120	1.05633E-0	,5)5	5.0570001	1.10504L	-05	1.502071
Within groups		0.001207	0	120	1.050552 0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Total		0.002198	31	149						
			-							
within-sd		0.003250)1							
effective n		4.0	00							
s _{bb}		0.002319	97							
U [*] bb		0.000583	39							
- 00 // hh		0.002310)7							
		5.002515								
Ubb(rel.)		0.236762	6							
		5.250,02								

Copper:

		1		2		3		4		5		
A1		0.0168		0.0168		0.0169		0.0168		0.0170		
A2		0.0169		0.0169		0.0169		0.0170		0.0168		
A3		0.0171		0.0171		0.0171		0.0170		0.0171		
Δ4		0.0171		0.0170		0.0169		0.0171		0.0170		
A5		0.0172		0.0171		0.0171		0.0170		0.0172		
B1		0 0170		0.0169		0.0168		0.0168		0.0168		
B2		0 0170		0.0172		0.0169		0.0170		0.0171		
B3		0 0171		0.0170		0.0170		0.0171		0.0170		
B4		0 0169		0.0169		0.0168		0.0170		0.0169		
B5		0 0170		0.0170		0.0170		0.0171		0.0171		
C1		0 0168		0.0169		0.0168		0.0168		0.0168		
C2		0 0170		0.0170		0.0170		0.0170		0.0170		
C3		0.0168		0.0170		0.0170		0.0170		0.0170		
C4		0.0170		0.0170		0.0169		0.0170		0.0170		
C5		0.0170		0.0170		0.0105		0.0171		0.0170		
СЈ П1		0.0172		0.0170		0.0171		0.0171		0.0171		
		0.0170		0.0170		0.0171		0.0170		0.0170		
D2 D3		0.0109		0.0109		0.0170		0.0109		0.0109		
DJ		0.0171		0.0109		0.0170		0.0170		0.0109		
D4 D5		0.0170		0.0170		0.0170		0.0170		0.0170		
		0.0172		0.0170		0.0171		0.0171		0.0171		
		0.0170		0.0170		0.0170		0.0170		0.0171		
		0.0170		0.0172		0.01/1		0.01/1		0.0172		
		0.01/0		0.0170		0.0109		0.0100		0.0170		
		0.0170		0.0170		0.0109		0.0170		0.0170		
		0.01/0		0.0170		0.01/0		0.0170		0.01/1		
F1		0.0172		0.0171		0.0158		0.01/0		0.0169		
FZ		0.0172		0.0170		0.0170		0.0169		0.0170		
F3		0.0171		0.0171		0.0170		0.0171		0.0170		
F4		0.0172		0.0172		0.0170		0.0170		0.01/1		
F5		0.01/1		0.01/1		0.01/2		0.01/2		0.01/2		
		0.0170	_	0.01/0		0.01/0		0.01/0		0.01/0		
	_	sums	of	degrees	of							
Source of	-	square	es	freedon	n	Mean				-		critical F-
variation		(SS)	- 0.6	(df)	~~	squares (MS)	F-value	e	P-val	ue	value
Between grou	Jps	1.05/6	- 06		29	3.64621	- 08	6.9231	///	9.845	26E-15	1.562071
within groups	5	6.325	-07	1	.20	5.266678	-09					
Tatal		1 (005	- 00	1	40							
Total		1.6895	-06	1	.49							
with him and		7 2575	- 05									
witnin-sa		/.25/6	:-05									
effective n			4.00									
Shh		8.831F	-05									
- 00 * //		1 304F	-05									
		Q Q 21 C	- 05									
Ubb		0.0310	-05						_			
u _{bb} (rel.)		0.519	416									
-								-				

Manganese:

		1		2	2	1	5	
Δ1		0 0469		0.0471	0 0470	0.0468	0.0471	
		0.0409		0.0471	0.0470	0.0400	0.0471	
A2		0.0470		0.0471	0.0472	0.0471	0.0409	
AJ		0.0472		0.0473	0.0472	0.0471	0.0472	
А4 А Г		0.0474		0.0472	0.0470	0.0474	0.0472	
		0.0474		0.0474	0.0476	0.0473	0.0475	
BI		0.0469		0.0468	0.0471	0.0470	0.0471	
B2		0.0472		0.0475	0.0474	0.0475	0.0473	
B3		0.0472		0.0472	0.0471	0.0473	0.0471	
B4		0.04/3		0.0469	0.0470	0.04/1	0.0472	
B5		0.04/2		0.04/2	0.04/2	0.04/1	0.04/4	
C1		0.0469		0.0472	0.0470	0.0471	0.0473	
C2		0.0472		0.0470	0.0473	0.0470	0.0470	
C3		0.0469		0.0469	0.0471	0.0471	0.0472	
C4		0.0471		0.0470	0.0472	0.0473	0.0471	
C5		0.0471		0.0471	0.0473	0.0472	0.0472	
D1		0.0474		0.0471	0.0472	0.0472	0.0469	
D2		0.0471		0.0472	0.0470	0.0470	0.0470	
D3		0.0471		0.0471	0.0473	0.0474	0.0471	
D4		0.0470		0.0470	0.0472	0.0473	0.0472	
D5		0.0474		0.0472	0.0472	0.0470	0.0471	
E1		0.0474		0.0473	0.0473	0.0473	0.0472	
E2		0.0472		0.0475	0.0472	0.0474	0.0475	
E3		0.0470		0.0470	0.0471	0.0471	0.0471	
E4		0.0472		0.0471	0.0469	0.0471	0.0472	
E5		0.0468		0.0472	0.0472	0.0471	0.0472	
F1		0.0470		0.0470	0.0469	0.0468	0.0468	
F2		0.0471		0.0470	0.0470	0.0469	0.0472	
F3		0.0472		0.0471	0.0472	0.0474	0.0471	
F4		0.0475		0.0475	0.0474	0.0473	0.0475	
F5		0.0475		0.0475	0.0475	0.0473	0.0474	
		sums of	5	dearees of				
Source of		squares		freedom	Mean			critical F-
variation		(SS)		(df)	squares (MS)	F-value	P-value	value
Between grou	ıps	1.057E-	06	29	3.64621E-08	6.9231777	9.84526E-15	1.562071
Within groups		6.32E-	07	120	5.26667E-09			
Total		1.689E-	06	149				
within-sd		7.257E-	05					
effective n		4	00					
Shh		8.831F-	05					
		1 30/F-	05					
u bb		0.0010						
u _{bb}		0.031E-	05					
u _{bb} (rel.)		0.18722	41					

Magnesium:

		1						
		1		2	3	4	5	
A1		0.0198		0.0198	0.0198	0.0197	0.0199	
A2		0.0197		0.0197	0.0196	0.0198	0.0197	
A3		0.0197		0.0196	0.0195	0.0196	0.0196	
A4		0.0196		0.0196	0.0195	0.0197	0.0196	
A5		0.0196		0.0196	0.0193	0.0194	0.0195	
B1		0.0199		0.0198	0.0200	0.0198	0.0198	
B2		0.0197		0.0198	0.0198	0.0198	0.0198	
B3		0.0197		0.0197	0.0196	0.0197	0.0196	
B4		0.0196		0.0196	0.0194	0.0196	0.0194	
B5		0.0193		0.0193	0.0193	0.0193	0.0193	
<u>C1</u>		0.0198		0.0198	0.0198	0.0198	0.0199	
C2		0.0197		0.0198	0.0197	0.0198	0.0197	
C3		0.0197		0.0195	0.0195	0.0197	0.0196	
C4		0.0195		0.0195	0.0196	0.0195	0.0195	
C5		0.0195		0.0193	0.0190	0.0195	0.0196	
D1		0.0100		0.0104	0.0104	0.0199	0.0190	
		0.0201		0.0200	0.0200	0.0199	0.0199	
D2 D3		0.0190		0.0197	0.0197	0.0198	0.0190	
		0.0190		0.0197	0.0197	0.0197	0.0197	
		0.0190		0.0195	0.0190	0.0197	0.0197	
D5 E1		0.0195		0.0194	0.0195	0.0194	0.0195	
		0.0199		0.0200	0.0200	0.0199	0.0200	
EZ		0.0198		0.0198	0.0198	0.0198	0.0198	
E3		0.0195		0.0196	0.0195	0.0195	0.0195	
E4		0.0196		0.0196	0.0193	0.0195	0.0196	
E5		0.0192		0.0191	0.0194	0.0193	0.0193	
F1		0.0200		0.0199	0.0197	0.0200	0.0199	
F2		0.019/		0.019/	0.0198	0.0198	0.0198	
F3		0.0196		0.0196	0.0196	0.0196	0.0197	
F4		0.0195		0.0197	0.0196	0.0195	0.0196	
F5		0.0194		0.0194	0.0193	0.0194	0.0194	
		0.0197		0.0196	0.0196	0.0197	0.0197	
		sums of		degrees of				
Source of		squares		freedom	Mean			critical F-
variation		<u>(SS)</u>		(<i>df</i>)	squares (MS)	<i>F-value</i>	P-value	value
Between grou	squ	4./9/E-0	J6	29	1.65428E-07	28.853649	2./014/E-41	1.562071
within groups	5	6.88E-1	J7	120	5.73333E-09	/		
Total			าค	140				
TUCAI		J.40JL-(00	149				
within-cd		7 5726-0	15					
within-su		7.372L-0	55					
effective n		4.(00					
s _{bb}		0.000199	98					
u [*] bb		1.36E-0	05					
U _{bb}		0.000199	98					
u _{bb} (rel.)		1.017252	29					

Chromium:

		1	2	3	4	5	
A1		113	113	112	114	113	
A2		114	114	113	113	114	
A3		112	113	114	114	113	
A4		113	114	114	114	114	
A5		112	112	114	112	112	
B1		112	114	114	114	115	
B2		113	113	113	113	113	
B3		114	115	114	113	114	
B4		113	115	115	115	115	
B5		115	115	114	115	114	
C1		112	115	114	114	113	
C2		115	115	113	117	115	
C3		112	113	114	115	112	
C4		114	115	115	115	116	
C5		113	113	113	114	113	
D1		115	113	114	115	114	
D2		115	115	114	114	114	
D3		115	114	114	113	116	
D4		113	114	114	114	114	
D5		113	113	112	112	112	
E1		116	114	113	113	112	
E2		112	114	114	113	112	
E3		112	113	113	113	119	
E4		115	116	115	117	115	
E5		114	115	114	114	114	
F1		113	114	115	113	113	
F2		115	114	114	117	115	
F3		113	115	114	113	117	
F4		113	112	113	113	113	
F5		112	113	113	112	112	
		sums of	degrees of				
Source of		squares	freedom	Mean	E value	Duchus	critical F-
Variation	Inc	101 70222	(<i>ui)</i>	2 E10114042	7-Value		1 562071
Within arouns	ips	126.8	120	1 056666667	5.5210755	2.10045L-00	1.302071
Within groups		120.0	, 120	1.050000007			
Total		228.59333	149				
within-sd		1.0279429)				
effective n		4.00)				
s _{bb}		0.7831744	•				
u [*] bb		0.1846721					
U _{bb}		0.7831744					
u. (rel)		0 6882427	,				
u _{bb} (iel.)		0.0002427					

Nickel:

	1	2	3	4	5	
A1	89	88	89	89	90	
A2	88	89	90	90	89	
A3	89	88	88	89	88	
A4	88	88	89	89	89	
A5	89	88	89	88	88	
B1	89	89	89	89	88	
B2	88	88	88	88	88	
B3	88	89	88	89	90	
B4	88	89	89	89	89	
B5	89	88	88	89	89	
C1	89	88	89	89	89	
C2	89	89	89	89	89	
C3	90	89	89	89	89	
C4	90	89	89	89	89	
C5	87	87	89	89	88	
D1	88	88	88	88	89	
D2	89	88	89	89	89	
D3	89	89	89	90	90	
D4	89	89	89	89	90	
D5	89	88	88	88	88	
E1	88	88	88	88	88	
E2	88	88	88	88	89	
E3	88	89	89	89	90	
E4	88	89	89	89	89	
E5	89	89	89	89	90	
F1	89	88	88	88	89	
F2	89	88	89	88	89	
F3	87	88	87	88	89	
F4	88	89	87	88	88	
F5	88	88	88	89	89	
	sums of	degrees of				
Source of	squares	freedom	Mean			critical F-
variation	(SS)	(df)	squares (MS)	F-value	P-value	value
Between groups	29.233333	29	1.008045977	3.217168	4.01937E-06	1.562071
Within groups	37.6	120	0.313333333			
Total	66.833333	149				
within-sd	0.5597619					
	1.00					
effective n	4.00					
S _{bb}	0.416/4/1					
U [°] bb	0.1005624	+				
U _{bb}	0.4167471					
u _{bb} (rel.)	0.4701923	8				

Zinc:

		1		2	3	4	5	
A1		0.0293		0.0290	0.0292	0.0291	0.0293	
A2		0.0290		0.0295	0.0294	0.0294	0.0294	
A3		0.0288		0.0291	0.0290	0.0291	0.0291	
A4		0.0291		0.0292	0.0293	0.0291	0.0291	
A5		0.0293		0.0296	0.0295	0.0296	0.0292	
B1		0.0294		0.0293	0.0290	0.0292	0.0293	
B2		0.0293		0.0289	0.0289	0.0293	0.0293	
B3		0.0295		0.0296	0.0291	0.0299	0.0296	
B4		0.0291		0.0295	0.0292	0.0294	0.0292	
B5		0.0291		0.0293	0.0292	0.0292	0.0292	
C1		0.0293		0.0292	0.0293	0.0293	0.0295	
C2		0.0294		0.0292	0.0291	0.0294	0.0294	
C3		0.0293		0.0294	0.0291	0.0293	0.0294	
C4		0.0293		0.0293	0.0292	0.0294	0.0294	
C5		0.0294		0.0294	0.0293	0.0294	0.0294	
D1		0.0289		0.0292	0.0296	0.0291	0.0295	
D2		0.0291		0.0291	0.0294	0.0291	0.0295	
D3		0.0292		0.0291	0.0293	0.0290	0.0293	
D4		0.0289		0.0292	0.0294	0.0293	0.0293	
D5		0.0290		0.0290	0.0295	0.0292	0.0294	
E1		0.0290		0.0291	0.0292	0.0290	0.0290	
E2		0.0288		0.0292	0.0291	0.0292	0.0294	
E3		0.0291		0.0292	0.0293	0.0292	0.0293	
E4		0.0292		0.0292	0.0293	0.0295	0.0292	
E5		0.0295		0.0293	0.0293	0.0295	0.0296	
F1		0.0290		0.0290	0.0288	0.0291	0.0291	
F2		0.0292		0.0291	0.0291	0.0291	0.0291	
F3		0.0292		0.0289	0.0292	0.0293	0.0292	
F4		0.0293		0.0291	0.0291	0.0293	0.0295	
F5		0.0291		0.0291	0.0295	0.0296	0.0294	
		sums of	f	degrees of				
Source of		squares	5	freedom	Mean			critical F-
variation		(SS)		(df)	squares (MS)	F-value	P-value	value
Between grou	ips	2.144E-	06	29	7.39425E-08	2.7693831	5.70959E-05	1.562071
Within groups		3.204E-	06	120	2.67E-08			
		E 240E	~~	140				
Total		5.348E-	06	149				
within cd		0.00016	24					
within-su		0.00010	54					
effective n		4.	00					
S _{bb}		0.00010	87					
u^*_{bb}		2.936E-	05					
U _{bb}		0.00010	87					
u _{bb} (rel.)		0.37162	91					

Titanium:

		1		2		3		4		5			
A1	0	0.0183	(0.0183		0.0183	0	.0185	C	0.0180			
A2	0	0.0183	(0.0184		0.0183	0	.0184	C	0.0187			
A3	0	0.0183	(0.0195		0.0184	0	.0182	C	0.0184			
Δ4	0	0186	(0185		0.0182	0	0191	C	0183			
A5	0	0.0184	(0.0183		0.0186	0	.0182	0	0.0183			
R1	0	0184		0182		0.0187	0	0179	0	0183			
B2	0	0187		0184		0.0182	0	0182	0	0182			
B3	0	0183	(0.0184		0.0183	0	0183	0	0183			
B3	0	0183		0182		0.0184	0	0184	0	0184			
B5	0	0183	, i	0187		0.0101	0	0176		0185			
C1	0	0183		0188		0.0182	0	0178	0	0175			
C2	0	0182	Ì	0179		0.0183	0	0199	0	0183			
C3	0	0184	, i	0180		0.0103	0	0184	0	0183			
C4	0	0183		0184		0.0103	0	0183		0176			
C5	0	0183	Ì	0183		0.0102	0	0184	0	0185			
CJ D1	0	0100		0184		0.0170	0	0184		0184			
	0	0183		018/		0.0102	0	0183		0184			
D2 D3	0	0103		0185		0.0102	0	0175		0188			
DJ	0	0101		0103		0.0103	0	012/		0180			
	0	0107		0101		0.0104	0	0104		0102			
	0	0102		1.0104		0.0103	0	0170		0101			
	0	0192		0102		0.0190	0	01/9		0104			
E2	0	0104		0103		0.0103	0	0103		0102			
	0	0104		0.0102		0.0103	0	0102		0102			
	0	0102		0.0104		0.0102	0	0102		0103			
	0	0103		0103		0.0103	0	.0102		0101			
	0	0103		0102		0.0107	0	.0105					
	0	0103		J.U183		0.0183	0	.0102		0107			
F3	0	0103	(0.0184		0.0100	0	.0183		0107			
F4	0	0.0103	(J.0183		0.0183	0	.0183		0.0183			
F5	0	0.0183	(0.0183		0.0183	0	.0186	U	0.0184			
	~	sums	of	degree	s of							., .	. –
Source d	Df	squar	res	freedo	рт	Меа	in (MC)	-	,	- ·		critica	1 -
variation	1	(55)	(df)	20	squares	(MS)	F-va	lue	P-val	ue		ie 2074
Between gro	oups	3.236	E-06		29	1.115/	/E-0/	0.781	/166	0.775	5368	1.56	2071
Within group)S	1./13	E-05		120	1.42/3	3E-07						
Total		2.036	E-05		149								
within-sd		0.000	3778										
offoctivo p			4 00										
			00. ب م										
> bb *			0										
U _{bb}		6.787	E-05										
U _{bb}		6.787	E-05										
$u_{bb}(rel.)$		0.369	3817										

Boron:

		1		2		3		4		5			
A1		6.9		5.8		7.3		5.4		5.4			
A2		6.4		5.2		5.6		5.5		5.6			
A3		6.0		6.0		8.0		5.1		6.0			
A4		7.5		7.4		5.7		8.9		5.4			
A5		5.5		5.3		8.3		5.3		5.0			
B1		5.6		4.9		18.0		9.1		9.0			
B2		21.0		6.3		5.1		6.7		5.6			
B3		6.4		5.4		5.3		5.1		5.0			
B4		5.3		5.1		6.1		5.6		6.9			
B5		5.1		7.4		7.2		9.2		6.3			
C1		5.2		6.2		6.8		12.0		9.5			
C2		5.0		10.0		5.3		5.4		9.1			
C3		6.2		14.0		4.9		5.1		7.7			
C4		4.8		5.4		5.0		6.1		9.8			
C5		5.3		5.7		9.8		7.4		6.3			
D1		16.0		5.9		6.1		5.5		7.3			
D2		5.7		5.8		4.7		6.5		5.3			
D3		5.5		8.8		5.8		9.0		15.0			
D4		6.1		5.2		6.0		5.3		19.0			
D5		6.3		6.3		4.9		5.2		5.0			
E1		7.0		4.9		21.0		12.0		5.1			
E2		10.0		8.0		5.2		5.9		5.7			
E3		6.3		5.0		4.7		5.6		11.0			
E4		7.3		6.0		4.8		22.0		5.2			
E5		5.4		5.3		5.4		5.0		5.1			
F1		6.6		4.6		9.8		5.4		5.2			
F2		7.6		5.6		6.2		7.1		5.2			
F3		5.6		6.5		7.7		5.2		13.0			
F4		5.6		5.0		5.5		6.8		6.3			
F5		4.8		5.5		4.9		6.7		5.1			
		sums o	of	degrees	of								
Source of	f	square	e <i>s</i>	freedor	п	Mean						critical	F-
variation		(SS)		(df)		squares (MS)	F-value	e	P-valu	е	value	9
Between gro	ups	257.01	573		29	8.86261	1494	0.84500)52	0.69269	966	1.562	071
Within group	s	1258.	588	1	20	10.48823	3333						
Total		1515.6	037	1	.49								
within-sd		3.2385	542										
effective n		4	1.00										
s _{bb}			0										
u^*_{bb}		0.5818	129										
Ubb		0.5818	129										
(rel)		8 3600	828										
		0.0009	520										

Beryllium:

		1	2	3	4	5	
A1		5.5	5.5	5.5	5.4	5.5	
Δ2		5.4	5.5	5.4	5 4	5.4	
Δ3		5.4	5.4	5.4	5.4	5 4	
Δ4		5.4	5.4	5.4	5.4	5.4	
Δ5		5.3	5 3	5.7	5.2	53	
R1		5.5	5.5	5.2	5.5	5.5	
		5.5	5.0	5.5	5.5	5.5	
		5.5	5.4	5.4	5.4	5.4	
		5.4	5.4	5.4	5.4	5.4	
D4 DE		5.5	5.4	5.5	5.4	5.4	
		5.2	5.2	5.2	5.2	5.2	
		5.5	5.5	5.5	5.5	5.5	
		5.5	5.4	5.4	5.4	5.4	
		5.4	5.4	5.4	5.4	5.4	
C4		5.4	5.4	5.4	5.4	5.4	
C5		5.3	5.2	5.3	5.3	5.3	
DI		5.5	5.5	5.5	5.5	5.5	
D2		5.5	5.4	5.4	5.5	5.4	
D3		5.4	5.4	5.4	5.4	5.4	
D4		5.4	5.4	5.4	5.4	5.4	
D5		5.3	5.3	5.3	5.3	5.3	
E1		5.5	5.5	5.5	5.5	5.5	
E2		5.4	5.4	5.4	5.5	5.5	
E3		5.4	5.4	5.4	5.4	5.4	
E4		5.4	5.4	5.3	5.4	5.4	
E5		5.3	5.1	5.3	5.2	5.3	
F1		5.5	5.5	5.4	5.5	5.5	
F2		5.4	5.4	5.5	5.4	5.4	
F3		5.4	5.4	5.4	5.4	5.4	
F4		5.3	5.4	5.3	5.3	5.3	
F5		5.3	5.3	5.2	5.3	5.3	
		sums of	degrees of				
Source of	-	squares	freedom	Mean			critical F-
variation		(SS)	(df)	squares (MS)	F-value	P-value	value
Between grou	ıps	0.934933	3 29	0.03223908	25.451906	1.48477E-38	1.562071
Within groups	5	0.15	2 120	0.001266667			
T - + - I		1 000000	2 140				
Total		1.086933	3 149				
within od		0 025500	2				
within-su		0.035590	5				
effective n		4.0	0				
s _{bb}		0.087994	9				
$U^*_{\rm bb}$		0.006393	9				
		0 087994	9				
		0.007994	-				
$u_{bb}(rel.)$		1.632356	6				

Bismuth:

		1		2		3		4	5	
A1		14		17		15		15	16	
A2		14		15		16		15	14	
A3		16		15		14		15	14	
A4		15		15		15		15	15	
A5		15		16		15		16	14	
B1		13		15		16		16	14	
B2		16		15		16		18	15	
B3		14		14		15		14	15	
B4		15		16		15		16	15	
B5		16		17		13		15	17	
C1		14		16		14		17	16	
C2		15		16		16		16	16	
C3		16		14		15		13	16	
C4		17		17		15		16	17	
C5		14		14		15		14	17	
D1		14		13		14		15	15	
D2		15		15		16		16	17	
D3		14		17		17		15	17	
D4		15		15		14		16	15	
D5		15		16		15		13	16	
E1		13		14		16		15	15	
E2		17		16		14		16	16	
E3		16		17		15		14	15	
E4		15		15		16		17	15	
E5		14		16		15		15	16	
F1		16		14		14		15	16	
F2		17		17		16		16	16	
F3		15		15		15		16	16	
F4		17		17		17		16	18	
F5		16		17		13		15	15	
		sums	of	degrees	of					
Source of		square	es	freedor	n	Mear	ו ו			critical F-
variation		(SS)		(df)		squares	(MS)	F-value	P-value	value
Between grou	ps	56	5.86		29	1.96068	9655	1.8852785	0.0093447	1.562071
Within groups		12	24.8	1	.20		1.04			
Total		181	1.66	1	.49					
within-sd		1 0108	020							
Within Su		1.0190	035							
effective n		۷	1.00							
s _{bb}		0.4797	629							
<i>u</i> [*] _{bb}		0.1832	099							
U _{bb}		0.4797	629							
u _{bb} (rel.)		3.1275	285							

Calcium:

		1		2	3	4	5	
A1		17		17	17	16	17	
A2		15		15	15	15	15	
A3		15		14	14	15	15	
A4		14		14	14	14	14	
A5		13		13	13	13	12	
B1		16		17	16	17	17	
B2		15		15	15	15	15	
B3		14		15	15	14	15	
B4		14		14	14	15	14	
B5		12		12	13	12	13	
C1		17		17	17	17	16	
C2		15		15	15	15	15	
C3		15		14	15	15	15	
C4		14		14	14	15	14	
C5		13		13	13	13	13	
D1		17		17	17	17	17	
D2		15		15	15	15	15	
D3		15		15	15	15	15	
D4		14		14	15	15	15	
D5		13		13	13	13	13	
E1		17		17	16	17	18	
E2		15		15	15	15	15	
E3		14		15	14	15	14	
E4		14		14	14	14	14	
E5		12		12	13	12	13	
F1		17		16	16	17	17	
F2		15		15	15	15	15	
F3		14		15	14	14	15	
F4		14		15	14	14	14	
F5		13		13	13	13	13	
		sums of	degree	s of				
Source of		squares	freed	ст	Mean			critical F-
variation		(SS)	(df)		squares (MS)	F-value	P-value	value
Between grou	ps	260.2	4	29	8.973793103	58.524738	1.23972E-	57 1.562071
Within groups		18.	4	120	0.153333333	5		
Total		278 6	1	1/0				
Total		270.0	<u>т</u>	149				
within-sd		0.39157	8					
effective n		4.0	0					
S bb		1.484962	9					
U [*] bb		0.070347	8					
U hh		1,484962	9					
55								
u _{bb} (rel.)		10.11555	1					

Cadmium:

		1		2		3	4		5	
A1		19.9		20.3		19.6	19.6		20.1	
A2		20.2		19.8		20.2	19.7		20.2	
A3		19.9		19.9		20.4	20.3		19.7	
A4		19.6		19.6		19.6	20.3		20.3	
A5		20.1		20.0		20.0	20.4		20.3	
B1		19.9		20.0		19.9	19.6		19.8	
B2		19.8		19.8		20.4	19.9		19.6	
B3		19.6		20.0		20.2	19.7		20.4	
B4		19.8		19.7		20.0	19.6		20.2	
B5		19.9		20.4		20.4	19.9		19.6	
C1		20.0		19.9		19.7	20.1		20.4	
C2		19.7		20.4		19.8	19.9		20.2	
C3		20.4		20.4		20.2	20.0		20.0	
C4		19.7		20.1		20.4	19.6		20.3	
C5		20.2		19.8		20.1	19.7		19.7	
D1		20.1		19.6		20.1	19.9		20.1	
D2		19.8		20.2		20.3	19.7		20.4	
D3		20.0		20.4		20.0	19.6		20.0	
D4		20.2		20.0		19.9	19.6		20.1	
D5		19.7		20.0		19.8	20.0		19.7	
E1		20.3		19.9		20.3	19.6		20.0	
E2		20.2		19.7		20.0	19.8		19.7	
E3		20.0		20.1		20.1	20.1		19.7	
E4		20.0		20.2		20.0	19.9		19.7	
E5		19.8		20.4		20.2	20.1		20.4	
F1		19.9		20.3		20.0	20.1		19.8	
F2		20.1		19.9		19.9	20.3		20.1	
F3		19.7		19.6		20.3	19.8		20.3	
F4		20.3		19.6		20.0	20.3		20.0	
F5		20.0		19.9		19.7	19.6		20.4	
		sums of	-	dearees	of	Mean				
Source o	f	sauares	.	freedo	m	squares				critical F-
variation	,	(55)		(df)		(MS)	F-value		P-value	value
Between arc	, nins	1 27393	33	(0)	29	0.0439287	7 0 620754	16	0.9310814	1 562071
Within arour	naps NS	8 49		-	120	0.0707667	7		019910011	11302071
Thermi group		011.		-		01070700				
Total		9.76593	33	-	149					
within-sd		0.2660)2					_		
effective n		4.(00							
s _{bb}			0							
u [*] bb		0.04779	91							
U _{bb}		0.04779	91							
u _{bb} (rel.)		0.239106	57							

Cobalt:

		1		2		3		4	5		
A1		21		21		21		21	21		
A2		21		22		21		21	21		
A3		22		22		21		21	22		
A4		22		21		22		21	21		
A5		22		22		22		21	22		
B1		21		21		21		21	21		
B2		22		22		22		22	21		
B3		22		22		21		21	21		
B4		21		21		21		22	21		
B5		21		21		22		21	22		
C1		21		21		21		21	21		
C2		21		21		21		21	21		
C3		22		21		21		22	21		
C4		21		22		22		21	21		
C5		21		21		22		22	21		
D1		22		21		21		21	22		
D2		21		22		22		21	21		
D3		22		21		22		21	21		
D4		22		22		22		21	21		
D5		22		22		22		22	22		
E1		21		22		21		21	21		
E2		22		22		21		22	22		
E3		21		21		21		21	22		
E4		21		21		22		21	22		
E5		22		21		21		21	21		
F1		21		21		21		22	21		
F2		22		21		21		21	22		
F3		21		21		21		21	22		
F4		22		21		22		22	21		
F5		21		21		22		22	21		
		sums o	of	degrees	of						
Source o	f	square	25	freedon	n	Mean					critical F-
variation		(SS)		(df)		squares (I	MS)	F-value	P-value	?	value
Between gro	ups	9	.34		29	0.322068	966	1.4864721	0.07186	24	1.562071
Within group	s		26	1	20	0.216666	667				
Total		35	.34	1	49						
within-sd		0.4654	747								
effective n		4	.00								
S bb		0.1623	286								
*		0.0836	235								
		0 1622	285								
U bb		0.1023	200								
(mal.)											
u _{bb} (rel.)		0.7592	544								

Gallium:

		1		2		3		4		5			
A1		0.0146		0.0145		0.0147		0.0146		0.0147			
A2		0.0145		0.0147		0.0147		0.0147		0.0147			
A3		0.0146		0.0146		0.0146		0.0147		0.0147			
Α4		0.0146		0.0146		0.0147		0.0147		0.0147			
A5		0.0146		0.0146		0.0146		0.0146		0.0146			
B1		0.0146		0.0147		0.0147		0.0146		0.0146			
B2		0.0146		0.0146		0.0146		0.0146		0.0147			
B3		0.0146		0.0147		0.0146		0.0147		0.0146			
B4		0.0146		0.0147		0.0146		0.0147		0.0147			
B5		0.0146		0.0146		0.0146		0.0147		0.0147			
C1		0.0146		0.0145		0.0146		0.0147		0.0147			
C2		0.0146		0.0147		0.0146		0.0147		0.0147			
C3		0.0146		0.0145		0.0147		0.0147		0.0147			
C4		0.0146		0.0146		0.0146		0.0146		0.0147			
C5		0.0145		0.0146		0.0147		0.0147		0.0147			
D1		0.0146		0.0145		0.0147		0.0146		0.0147			
D2		0.0147		0.0146		0.0147		0.0146		0.0146			
D3		0.0146		0.0146		0.0147		0.0147		0.0147			
D4		0 0146		0.0146		0.0146		0 0147		0 0147			
D5		0 0146		0.0147		0.0147		0 0146		0 0148			
F1		0 0146		0.0146		0.0147		0 0146		0 0146			
F2		0 0146		0.0146		0.0147		0 0146		0 0147			
E2		0 0146		0.0146		0.0146		0 0147		0 0146			
E3		0 0146		0.0146		0.0146		0 0147		0 0147			
E5		0 0146		0.0147		0.0146		0 0146		0 0147			
F1		0.0147		0.0145		0.0145		0.0146		0.0147			
F2		0 0147		0.0146		0.0146		0 0146		0 0147			
F3		0 0146		0.0146		0.0146		0 0146		0 0147			
F4		0 0146		0 0147		0.0146		0 0146		0 0147			
F5		0.0146		0.0147		0.0147		0.0148		0.0147			
15		sums	of	dearees	of	0.0117				0.0117			
Source of	r i	sauare	201	freedo	m	Mear	,					critic	al F-
variation		(55)		(df)		squares	' (MS)	F-valı	ie	P-valu	P	val	lue
Between arou	ins	6.773F	-08	(47)	29	2.33563	F-09	0.574	3358	0.9573	418	1.5	52071
Within arouns	s	4.88F	-07		120	4.06667	F-09	0107 10		019070	110	1.0	52072
Wienin groups	5	nool	,		120								
Total		5.557E	-07		149								
within cd		6 2775	: 0F										
within-su		0.3776	-05										
effective n		2	1.00										
s _{bb}			0										
u [*] bb		1.146E	-05										
U _{bb}		1.146E	-05										
u _{bb} (rel.)		0.0782	618										

Mercury

		1		2		3		4		5	
A1		21		21		21		21		22	
A2		21		21		21		21		21	
A3		21		22		21		22		21	
A4		21		21		21		21		21	
A5		21		21		21		21		21	
B1		21		21		21		21		21	
B2		21		21		22		21		22	
B3		21		21		22		21		22	
B4		21		22		21		21		21	
B5		21		21		21		21		21	
C1		21		21		21		21		21	
C2		21		21		21		22		22	
C3		21		21		21		21		21	
C4		21		21		22		21		21	
C5		22		22		21		21		21	
D1		21		22		21		21		21	
D2		21		21		21		21		21	
D3		21		21		21		21		21	
D4		21		21		21		21		22	
D5		22		21		21		22		21	
E1		21		21		21		22		21	
E2		21		21		22		22		21	
E3		21		21		21		21		21	
E4		21		21		21		21		21	
E5		21		21		22		21		21	
F1		21		21		21		21		21	
F2		21		21		21		21		21	
F3		21		22		21		21		21	
F4		21		21		21		22		21	
F5		21		21		22		21		21	
		sums	of	dearees	of						
Source o	f	sauar	es	freedo	m	Mean					critical F-
variation	,	(SS)		(df)		sauares (MS)	<i>F-value</i>		P-value	value
Between aro	ups		3.76	(-)	29	0.129655	5172	0.948696	64	0.5471729	1.562071
Within aroup	S		16.4		120	0.136666	5667		-		
	-		-		-						
Total		2	0.16		149						
within-sd		0 3696	846								
Within Su		0.0000									
effective n			4.00								
S _{bb}			0								
u [*] bb		0.0664	146								
U _{bb}		0.0664	146								
u _{bb} (rel.)		0.3138	3686								

Lithium (segregation):

	1	2	3	4	5	
A1	8.1	8.2	8.2	8.2	8.1	8.1600
A2	7.2	6.9	7.0	7.2	7.2	7.1000
A3	6.7	6.6	6.4	6.7	6.7	6.6200
A4	6.5	6.4	6.5	6.5	6.6	6.5000
A5	4.7	5.0	4.6	4.8	4.7	4.7600
B1	8.0	8.2	7.9	8.1	8.2	8.0800
B2	7.1	7.1	7.1	7.2	7.2	7.1400
B3	6.6	6.7	6.6	6.6	6.7	6.6400
B4	6.5	6.7	6.5	6.5	6.5	6.5400
B5	4.7	4.6	4.8	4.5	4.6	4.6400
C1	8.2	8.1	8.1	8.2	8.2	8.1600
C2	7.2	7.1	7.1	7.2	7.2	7.1600
C3	6.9	6.6	6.8	7.0	6.8	6.8200
C4	6.6	6.4	6.7	6.8	6.6	6.6200
C5	5.4	4.9	4.9	5.1	5.4	5.1400
D1	8.2	8.0	8.2	8.3	8.2	8.1800
D2	7.1	7.1	7.1	7.1	7.2	7.1200
D3	6.8	6.7	6.8	6.9	6.8	6.8000
D4	6.6	6.6	6.7	6.8	6.9	6.7200
D5	4.9	5.2	5.0	4.9	5.2	5.0400
E1	8.1	8.1	8.1	8.1	8.3	8.1400
E2	7.2	7.1	7.2	7.2	7.3	7.2000
E3	6.5	7.0	6.5	6.5	6.6	6.6200
E4	6.6	6.7	6.2	6.5	6.7	6.5400
E5	4.7	3.9	4.9	4.4	4.6	4.5000
F1	8.1	7.8	8.1	8.1	8.2	8.0600
F2	7.2	7.2	7.3	7.4	7.2	7.2600
F3	6.4	6.5	6.3	6.4	6.5	6.4200
F4	6.2	6.6	6.4	6.4	6.4	6.4000
F5	4.8	4.8	4.7	5.1	5.0	4.8800

Sodium (segregation):

	1	2	3	4	5	
A1	10.0	10.0	10.0	10.0	10.0	10.0000
A2	8.9	8.6	8.5	8.9	9.0	8.7800
A3	8.2	8.1	7.9	8.3	8.2	8.1400
A4	8.0	7.9	8.1	8.0	8.1	8.0200
A5	5.7	6.1	5.6	5.8	5.6	5.7600
B1	9.9	10.0	9.8	9.8	10.0	9.9000
B2	8.8	8.8	8.8	8.8	9.0	8.8400
B3	8.2	8.3	8.2	8.1	8.2	8.2000
B4	7.9	8.2	7.9	7.9	7.9	7.9600
B5	5.6	5.5	5.7	5.3	5.5	5.5200
C1	10.0	10.0	10.0	10.0	10.0	10.0000
C2	8.8	8.7	8.8	8.9	8.7	8.7800
C3	8.4	8.1	8.2	8.6	8.3	8.3200
C4	7.9	7.8	8.1	8.2	8.0	8.0000
C5	6.4	5.8	5.8	6.2	6.5	6.1400
D1	10.0	10.0	10.0	10.0	10.0	10.0000
D2	8.7	8.6	8.6	8.8	8.7	8.6800
D3	8.3	8.4	8.3	8.4	8.4	8.3600
D4	8.1	7.9	8.0	8.3	8.5	8.1600
D5	5.9	6.2	6.0	5.8	6.1	6.0000
E1	10.0	10.0	10.0	10.0	10.0	10.0000
E2	8.9	8.8	9.1	9.0	9.1	8.9800
E3	7.9	8.5	8.0	7.9	8.1	8.0800
E4	8.0	8.1	7.5	7.8	8.1	7.9000
E5	5.7	4.7	5.8	5.3	5.6	5.4200
F1	10.0	9.4	10.0	10.0	10.0	9.8800
F2	8.9	8.8	9.0	9.2	8.8	8.9400
F3	7.9	7.9	7.8	7.8	8.0	7.8800
F4	7.6	8.0	7.7	7.9	7.8	7.8000
F5	5.8	5.8	5.7	6.3	6.1	5.9400

Lead:

		1		2		3		4		5			
A1		43		43		43		43		43			
A2		43		44		44		46		46			
A3		44		44		43		44		44			
A4		44		43		45		43		44			
A5		43		43		44		44		43			
B1		45		44		44		46		44			
B2		43		44		43		44		45			
B3		43		43		43		45		44			
B4		42		45		43		45		44			
B5		43		43		44		44		45			
C1		44		44		45		44		44			
C2		45		44		45		44		44			
C3		45		43		44		43		43			
C4		43		46		44		43		43			
C5		43		43		44		45		45			
D1		44		43		44		45		44			
D2		44		44		43		45		43			
D3		44		44		44		45		44			
D4		44		44		45		45		44			
D5		43		44		44		45		44			
E1		43		43		44		42		45			
E2		42		43		44		44		45			
E3		43		44		43		43		43			
E4		45		45		44		44		45			
E5		43		43		44		42		45			
F1		44		43		44		46		45			
F2		43		43		44		44		44			
F3		42		43		43		42		44			
F4		43		43		44		43		43			
F5		44		44		44		44		44			
		sums	of	degrees	; of								
Source of	F	squar	es	freedo	т	Mear	ו ו					critical	F-
variation		, (SS))	(df)		squares	(MS)	F-val	ue	P-value		value	e e
Between grou	Jps	32.293	3333		29	1.11356	3218	1.606	1008	0.040235	54	1.562	071
Within groups	5		83.2		120	0.69333	3333						
Total		115.49	9333		149								
within-sd		0.8326	5664										
effective n			4.00										
S hh		0.3241	1257										
*		0 140	5902								+		
		0.179	1257								+		
U bb		0.3241	123/								+		
(0 7201	620								+		
u _{bb} (rel.)		0.7395	0628										

Antimony

		1		2	3	4	5	
A1		31		32	32	31	32	
A2		32		33	32	31	33	
A3		34		36	34	33	32	
A4		34		36	34	34	34	
A5		36		36	35	35	35	
B1		33		33	33	34	34	
B2		36		37	34	37	33	
B3		33		32	33	31	35	
B4		32		33	31	30	34	
B5		36		34	34	32	32	
C1		34		34	33	32	31	
C2		34		33	33	32	32	
C3		32		35	32	32	33	
C4		33		32	34	33	32	
C5		34		33	34	31	34	
D1		32		34	33	31	32	
D2		33		32	32	33	33	
D3		32		34	31	33	32	
D4		34		31	31	34	32	
D5		35		33	32	33	32	
E1		34		35	36	33	34	
E2		35		37	33	34	34	
E3		33		33	32	31	33	
E4		34		34	32	32	33	
E5		33		33	32	32	33	
F1		33		33	32	32	33	
F2		32		34	34	32	31	
F3		34		33	33	34	32	
F4		35		34	33	35	36	
F5		34		33	34	33	34	
		sums of		degrees of				
Source of		squares		freedom	Mean			critical F-
variation		(SS)		(df)	squares (MS)	<i>F-value</i>	P-value	value
Between grou	ps	133.843	37	29	4.615300128	3.9509545	5.55222E-08	3 1.562071
Within groups		140.1777	8	120	1.168148148	5		
Total		274 0214	10	1/0				
TUCAI	-	274.0214	+0	149				
within-sd		1.08080)9					
effective n		4.0	00					
s _{bb}		0.928325	54					
u [*] bb		0.194169	96					
U bb		0.928325	54					
		0 70 60 5	10					
u _{bb} (rel.)		2.796347	/9					

Tin:

		1		2		3		4	5		
A1		16		17		17		17	17		
A2		16		17		16		17	17		
A3		16		17		16		16	16		
A4		17		16		16		16	16		
A5		16		16		16		16	16		
B1		16		16		16		17	17		
B2		16		16		16		16	16		
B3		17		17		16		17	16		
B4		17		16		16		16	16		
B5		16		15		17		16	16		
C1		16		17		17		17	17		
C2		17		17		17		17	16		
C3		16		17		17		16	17		
C4		16		17		16		17	16		
C5		16		16		16		16	16		
D1		16		16		16		16	16		
D2		17		17		16		16	16		
D3		17		16		16		17	17		
D4		16		16		17		16	16		
D5		16		16		16		16	16		
E1		17		16		16		16	16		
E2		17		16		16		16	16		
E3		17		16		17		16	17		
E4		17		17		16		17	16		
E5		16		16		17		16	17		
F1		16		16		16		16	16		
F2		16		16		16		16	16		
F3		16		16		16		16	16		
F4		16		16		16		16	16		
F5		16		16		16		16	17		,
_	-	sums	of	degrees	of						
Source o)f	squar	es	freedo	т	Mean	-				critical F-
variation	า	(SS))	(df)		squares (M	<u>S) F-</u>	value	P-value		value
Between gro	ups		11.5		29	0.3965517	24 2.1	630094	0.001980	5	1.562071
Within group	S		22		120	0.18333333	33			_	
Total			33.5		149					-	
within-sd		0.4281	L744								
effective n			4.00							-	
s _{bb}		0.2308	3779								
<i>u</i> [*] _{bb}		0.0769	9224								
U _{bb}		0.2308	3779								
										_	
$u_{bb}(rel.)$		1.4164	1287								

Vanadium:

		1		2		3		4		5			
A1		82		81		83		83		81			
A2		81		82		82		82		82			
A3		81		81		82		82		81			
A4		82		82		82		84		82			
A5		80		81		82		80		80			
B1		81		81		90		84		84			
B2		90		80		80		81		81			
B3		81		82		81		81		82			
B4		82		81		82		81		83			
B5		81		82		82		84		82			
C1		81		82		83		87		85			
C2		80		84		82		81		85			
C3		83		85		81		82		83			
C4		82		81		82		82		84			
C5		80		81		85		83		81			
D1		87		81		81		82		82			
D2		83		81		82		82		82			
D3		81		83		82		84		89			
D4		81		81		81		82		91			
D5		81		82		81		81		81			
E1		82		81		90		85		80			
E2		84		83		81		81		81			
E3		82		81		82		82		85			
E4		82		82		81		93		82			
E5		81		82		81		81		82			
F1		81		80		84		80		81			
F2		83		81		82		82		81			
F3		80		82		82		80		87			
F4		80		81		80		81		81			
F5		80		81		81		82		81			
		sums d	of	degrees	of								
Source o	f	square	es	freedor	n	Mean						critical	F-
variation	1	(SS)		(df)		squares (MS)	F-valu	e	P-valu	e	value	2
Between gro	oups	12	8.8		29	4.4413	7931	0.89244	406	0.6266	545	1.562	071
Within group)S	59	7.2	1	20	4.976666	5667						
Total			726	1	.49								
within-sd		2.2308	444										
effective n		4	ŀ.00										
S bb			0										
U [*] bb		0.4007	758										
		0 4007	75Q										
U DD		0.4007	, 50										
(rol)			610										
u _{bb} (rel.)		0.40/5	στα										

Zirconium:						
	1	2	3	4	5	
A1	50	49	50	50	49	
A2	49	50	49	50	49	
A3	49	49	49	50	49	
A4	49	49	49	50	49	
A5	48	49	49	48	48	
B1	49	49	51	50	50	
B2	51	48	49	49	49	
B3	49	50	49	50	50	
B4	50	50	49	49	50	
B5	50	49	50	51	50	
C1	50	49	50	51	50	
C2	49	50	50	50	50	
C3	50	50	50	49	50	
C4	50	49	49	49	50	
C5	48	49	50	50	49	
D1	49	49	49	50	50	
D2	50	49	50	49	50	
D3	49	49	49	50	50	
D4	49	48	49	49	51	
D5	49	49	49	50	49	
E1	50	49	51	50	49	
E2	50	50	49	49	49	
E3	49	49	50	49	50	
E4	49	50	49	52	50	
E5	49	50	50	50	50	
F1	49	48	50	48	49	
F2	50	49	49	50	50	
F3	49	49	49	49	51	
F4	49	49	49	50	49	
F5	49	50	50	50	49	
	sums of	degrees of				
Source of	squares	freedom	Mean			critical F-
variation	(SS)	(df)	squares (MS)	F-value	P-value	value
Between groups	18.133333	29	0.625287356	1.3593203	0.1278612	1.562071
Within groups	55.2	120	0.46			
Total	73.333333	149				
within-sd	0.678233					
	4.00					
	4.00					
\$ bb	0.2032///					
U _{bb}	0.121846					
U _{bb}	0.2032777					
u _{bb} (rel)	0 4109388					
	011105500					

Annex 2: Calculation of uncertainty contribution of potential inhomogeneity (area) $(u_{bb}(rel.)$ here means u_{bb} (rel) Area in Table 40) The number of degrees of freedom (effective n) is calculated using the following equation

$$n = \frac{\sum_{i} g_{i} - (\sum_{i} g_{i}^{2} / \sum_{i} g_{i})}{i}$$

with

 g_i = number of sparks per circle i = number of circles (= 4: Centre, Inner, Middle, Outer)

Silicon:

Centre	1448.9	1455.2	1459.3					
Inner	1455.4	1453.7	1461.5	1457.9	1450.6	1450.0	1455.4	1451.5
Middle	1463.3	1457.3	1447.8	1451.5	1448.3	1452.6	1446.9	1452.6
Outer	1476.9	1476.4	1466.4	1459.7	1466.5	1472.0	1459.0	1461.4
Source of	sums of	degrees of	Mean squares			critical F-		
variation	squares (SS)	freedom (df)	(MS)	F-value	P-value	value		
Between groups	1061.855463	3	353.951821	11.09243	0.0001059	3.0279984		
Within groups	733.9141667	23	31.90931159					
T - + - 1	1705 70002	26						
lotal	1/95./6963	26						
within-sd	5.648833							
effective n	6.52							
S bb	7.028816							
u [*] bb	1.201461							
u _{bb}	7.028816							
u _{bb} (rel.)	0.482184							

Iron:

Centre	10003.9	10079.0	10092.5					
Inner	10064.3	10060.1	10098.8	10054.8	9940.2	10059.4	9913.8	10174.7
Middle	9929.6	9963.4	10056.6	9796.2	9890.5	9979.1	10012.3	10098.2
Outer	9824.2	9881.3	9985.2	9969.4	9985.1	9927.6	9901.7	9977.9
Source of variation	sums of squares (SS)	degrees of freedom (df)	Mean squares (MS)	F-value	P-value	critical F- value		
Between groups	70989.91427	3	23663.30476	3.845735	0.0228752	3.0279984		
Within groups	141521.9748	23	6153.129339					
Total	212511.8891	26						
within-sd	78.441885							
effective n	6.52							
s _{bb}	51.828757							
u [*] _{bb}	16.683959							
U _{bb}	51.828757							
u _{bb} (rel.)	0.518826							

Copper:

Centre	171.2	172.2	172.1					
Inner	171.8	173.5	174.5	171.8	170.3	174.0	170.3	173.5
Middle	171.6	172.3	174.4	177.6	171.0	171.8	170.4	173.9
Outer	170.0	170.7	176.9	171.9	176.5	172.0	171.2	173.9
Source of	sums of	degrees of	Mean squares			critical F-		
variation	squares (SS)	freedom (df)	(MS)	F-value	P-value	value		
Between groups	3.136018519	3	1.045339506	0.2270993	0.8765613	3.0279984		
Within groups	105.8691667	23	4.603007246					
Total	109.0051852	26						
within od	2 145462							
within-su	2.145462							
effective n	6.52							
s _{bb}	0.000000							
u [*] bb	0.456323							
u _{bb}	0.456323							
u _{bb} (rel.)	0.264319							

Manganese:

Centre	475.6	474.1	474.2					
Inner	475.8	474.2	474.6	474.0	475.0	474.1	474.4	474.5
Middle	480.4	477.0	475.1	476.6	472.9	474.0	475.3	475.4
Outer	485.6	481.2	476.6	478.8	477.2	480.5	475.6	475.3
Source of	sums of	degrees of	Mean squares	E-value	Pavalue	critical F-		
Potwoop groups	96 1409	11 eeuonii (ui)	29 7166	E 22E800E80	0.0061999	2 0270094		
between groups	00.1490	5	20.7100	2.222090209	0.0001000	5.02/9904		
Within groups	124.0134	23	5.391886957					
lotal	210.1632	26						
within-sd	2,322044							
	2.022011							
effective n	6.52							
s _{bb}	1.891619							
u [*] bb	0.493880							
U bb	1.891619							
u _{bb} (rel.)	0.397210							

Magnesium:

Centre	168.0	168.7	167.2					
Inner	167.0	167.1	168.4	167.9	165.5	166.6	165.4	169.5
Middle	166.9	166.5	169.0	162.8	165.4	166.3	166.8	168.9
Outer	164.4	165.1	167.1	166.4	166.1	165.5	165.2	167.2
Source of	sums of	degrees of	Mean squares	Evalua	Ryalua	critical F-		
Variacion	squares (33)	needoni (di)	(113)	r-value	<i>r-value</i>	value		
Between groups	12.18833333	3	4.062/////8	1.90/3425	0.1565813	3.02/9984		
Within groups	48.99166667	23	2.130072464					
Total	61.18	26						
within-sd	1.459477							
	6.53							
effective n	6.52							
s _{bb}	0.544513							
u [*] _{bb}	0.310419							
u _{bb}	0.544513							
u _{bb} (rel.)	0.326643							

Chromium:

Centre	83.2	83.7	85.3					
Inner	84.7	83.2	83.8	84.0	82.0	82.7	81.8	83.9
Middle	84.2	81.7	82.7	82.5	83.3	83.0	82.7	83.0
Outer	84.4	83.3	82.4	84.2	85.1	84.5	83.3	84.3
Source of	sums of	degrees of	Mean squares			critical F-		
variation	squares (SS)	freedom (df)	(MS)	F-value	P-value	value		
Between groups	5.220185185	7	0.745740741	0.7377805	0.6433148	2.5435343		
Within groups	19.205	19	1.010789474					
Total	24.42518519	26						
within-sd	1.005380							
effective n	6.52							
S _{bb}	0.000000							
u [*] bb	0.224298							
U _{bb}	0.224298							
u _{bb} (rel.)	0.268811							

Nickel:

Centre	74.5	71.6	72.1					
Inner	75.7	70.5	72.8	70.4	71.4	71.0	72.8	72.3
Middle	73.3	73.3	72.1	73.3	70.5	74.4	71.3	73.7
Outer	74.1	73.4	73.0	72.2	72.8	71.2	72.5	70.5
Source of	sums of	degrees of	Mean squares			critical F-		
variation	squares (SS)	freedom (df)	(MS)	F-value	P-value	value		
Between groups	19.1162963	7	2.730899471	1.7169785	0.1646976	2.5435343		
Within groups	30.22	19	1.590526316					
Total	40 2262062	26						
local	49.3302903	20						
within-sd	1.261161							
effective n	6.52							
s _{bb}	0.418263							
u [*] _{bb}	0.281362							
u _{bb}	0.418263							
u _{bb} (rel.)	0.577150							
Zinc:

Centre	284.2	274.1	282.7					
Inner	286.3	282.2	279.8	279.3	283.1	281.2	275.2	278.2
Middle	293.1	283.2	284.6	280.6	283.2	287.6	284.8	284.0
Outer	283.7	275.9	275.0	279.4	280.7	289.6	289.6	278.8
Source of variation	sums of squares (SS)	degrees of freedom (df)	Mean squares (MS)	F-value	P-value	critical F- value		
Between groups	219.3401852	7	31.33431217	1.7431822	0.158476	2.5435343		
Within groups	341.5316667	19	17.97535088					
Total	560.8718519	26						
within-sd	4.239735							
effective n	6.52							
s _{bb}	1.431568							
u [*] bb	0.945874							
u _{bb}	1.431568							
u _{bb} (rel.)	0.507242							

Titanium:

Centre	179.7	179.1	174.0					
Inner	181.8	178.5	183.6	179.1	182.1	177.6	185.1	174.3
Middle	187.5	183.9	186.6	180.6	180.9	174.6	171.6	171.6
Outer	190.2	190.2	180.6	186.0	183.0	181.5	187.2	177.0
Source of	sums of	degrees of	Mean squares			critical F-		
variation	squares (SS)	freedom (df)	(MS)	F-value	P-value	value		
Between groups	241.9125	7	34.55892857	1.4365294	0.2485182	2.5435343		
Within groups	457.0875	19	24.05723684					
Total	699	26						
Total	055	20						
within-sd	4.904818							
effective n	6.52							
s _{bb}	1.269273							
u [*] _{bb}	1.094252							
U _{bb}	1.269273							
u _{bb} (rel.)	0.701127							

Boron:

Centre	7.41	8.13	8.40					
Inner	7.29	7.40	7.11	7.69	7.57	7.27	7.76	8.01
Middle	7.04	7.38	7.32	7.66	7.05	7.24	5.41	8.71
Outer	7.40	8.47	7.46	7.31	7.44	7.67	7.75	7.44
Source of variation	sums of squares (SS)	degrees of freedom (df)	Mean squares (MS)	<i>F-value</i>	P-value	critical F- value		
Between groups	2.542761574	7	0.363251653	1.0191224	0.449463	2.5435343		
Within groups	6.772279167	19	0.356435746					
Total	9.315040741	26						
within-sd	0.597022							
effective n	6.52							
s _{bb}	0.032336							
u [*] _{bb}	0.133194							
u _{bb}	0.133194							
u _{bb} (rel.)	1.773908							

Beryllium:

Centre	5.80	5.78	5.83					
Inner	5.90	5.86	5.86	5.85	5.83	5.82	5.79	5.82
Middle	5.97	5.98	5.99	5.94	5.94	5.95	5.94	5.96
Outer	6.04	6.04	6.02	6.00	6.04	6.02	6.01	6.01
Source of	sums of	degrees of	Mean squares			critical F-		
variation	squares (SS)	freedom (df)	(MS)	F-value	P-value	value		
Between groups	0.00132963	7	0.000189947	0.0180917	0.9999922	2.5435343		
Within groups	0.199483333	19	0.010499123					
Total	0.200812963	26						
within-sd	0.102465							
effective n	6.52							
s _{bb}	0.000000							
u [*] _{bb}	0.022860							
u _{bb}	0.022860							
u _{bb} (rel.)	0.385951							

Bismuth:

Centre	12.78	13.20	8.64					
Inner	9.06	14.08	12.77	12.32	15.25	15.10	13.18	17.58
Middle	14.09	15.50	13.90	12.45	13.25	10.36	10.58	15.28
Outer	13.36	13.56	11.17	8.49	12.04	12.35	11.69	10.83
Source of variation	sums of squares (SS)	degrees of freedom (df)	Mean squares (MS)	F-value	P-value	critical F- value		
Between groups	35.48643241	7	5.069490344	1.1022787	0.4009524	2.5435343		
Within groups	87.38290833	19	4.599100439					
Total	122.8693407	26						
within-sd	2.144551							
effective n	6.52							
s _{bb}	0.268630							
u [*] _{bb}	0.478444							
u _{bb}	0.478444							
u _{bb} (rel.)	3.767715							

Calcium:

Centre	20.95	22.59	20.34					
Inner	20.78	20.86	20.73	20.52	20.18	20.68	20.02	20.50
Middle	20.64	20.09	20.96	20.48	20.70	21.06	20.03	21.75
Outer	19.85	20.11	20.19	19.64	20.94	20.17	19.82	20.32
Source of	sums of	degrees of	Mean squares			critical F-		
variation	squares (SS)	freedom (df)	(MS)	F-value	P-value	value		
Between groups	2.236199074	7	0.319457011	0.7925722	0.6025603	2.5435343		
Within groups	7.658208333	19	0.403063596					
Total	9.894407407	26						
within-sd	0.634873							
effective n	6.52							
s _{bb}	0.000000							
u [*] _{bb}	0.141639							
U bb	0.141639							
u _{bb} (rel.)	0.689177							

Cadmium:

Centre	25.60	24.06	25.05					
Inner	24.65	24.73	24.30	25.65	21.94	24.16	25.20	23.57
Middle	24.33	23.11	24.45	24.26	24.46	23.46	24.25	24.83
Outer	22.47	26.70	25.10	26.05	24.71	28.70	23.78	27.35
Source of	sums of	degrees of	Mean squares			critical F-		
variation	squares (SS)	freedom (df)	(MS)	F-value	P-value	value		
Between groups	7.731822917	7	1.104546131	0.4799382	0.8372603	2.5435343		
Within groups	43.72724375	19	2.301433882					
Total	51.45906667	26						
within-sd	1 517048							
within 50	1.517040							
effective n	6.52							
s _{bb}	0.000000							
u [*] _{bb}	0.338450							
U _{bb}	0.338450							
u _{bb} (rel.)	1.370272							

Cobalt:

Centre	25.46	23.52	24.40					
Inner	26.36	25.64	24.36	24.88	25.18	25.58	23.86	22.78
Middle	27.84	25.26	26.86	25.18	26.64	27.44	24.92	25.54
Outer	26.76	25.22	24.90	25.40	26.04	27.38	27.38	24.96
Source of	sums of	dearees of	Mean squares			critical F-		
variation	squares (SS)	freedom (df)	(MS)	F-value	P-value	value		
Between groups	16.30888519	7	2.329840741	1.845952	0.1362849	2.5435343		
Within groups	23.98056667	19	1.262135088					
Total	40.28945185	26						
within-sd	1.123448							
effective n	6.52							
s _{bb}	0.404717							
u [*] _{bb}	0.250638							
U bb	0.404717							
u _{bb} (rel.)	1.584272							

Gallium:

Centre	121.00	121.70	119.30					
Inner	120.20	120.40	120.10	120.10	121.00	121.20	120.10	121.10
Middle	119.50	120.50	120.10	120.00	120.20	120.60	119.50	121.40
Outer	119.20	118.30	119.70	118.00	118.40	119.20	118.60	119.90
Source of variation	sums of squares (SS)	degrees of freedom (df)	Mean squares (MS)	F-value	P-value	critical F- value		
Between groups	4.936851852	7	0.70526455	0.6973732	0.6739351	2.5435343		
Within groups	19.215	19	1.011315789					
Total	24.15185185	26						
within-sd	1.005642							
effective n	6.52							
s _{bb}	0.000000							
u [*] bb	0.224356							
u _{bb}	0.224356							
u _{bb} (rel.)	0.187004							

Mercury:

Centre	23.42	23.33	23.29					
Inner	21.70	23.22	22.52	22.77	25.50	23.12	23.81	24.95
Middle	22.87	25.85	23.69	23.05	22.35	24.54	23.50	22.88
Outer	21.81	23.03	21.37	23.46	21.21	22.79	22.05	21.41
Source of	sums of	degrees of	Mean squares			critical F-		
variation	squares (SS)	freedom (df)	(MS)	F-value	P-value	value		
Between groups	5.036017824	7	0.719431118	0.4481672	0.859217	2.5435343		
Within groups	30.50020625	19	1.605274013					
Tabal	25 52622407	26						
lotai	35.53622407	26						
within-sd	1 266994							
	11200331							
effective n	6.52							
s _{bb}	0.000000							
u [*] _{bb}	0.282663							
U _{bb}	0.282663							
u _{bb} (rel.)	1.224190							

Lithium:

Centre	6.35	6.44	6.39					
Inner	6.32	6.43	6.37	6.43	6.36	6.38	6.33	6.32
Middle	6.34	6.30	6.40	6.38	6.24	6.38	6.25	6.29
Outer	6.23	6.26	6.22	6.24	6.25	6.28	6.18	6.27
Source of variation	sums of squares (SS)	degrees of freedom (df)	Mean squares (MS)	<i>F-value</i>	P-value	critical F- value		
Between groups	0.03285463	7	0.004693519	0.8688173	0.5479237	2.5435343		
Within groups	0.102641667	19	0.005402193					
Total	0.135496296	26						
within-sd	0.073500							
effective n	6.52							
s _{bb}	0.000000							
u [*] _{bb}	0.016398							
U bb	0.016398							
u _{bb} (rel.)	0.259471							

Sodium:

Centre	4.89	4.80	4.86					
Inner	5.07	4.83	4.89	4.74	4.83	4.98	4.89	4.68
Middle	5.10	4.92	4.74	4.98	4.80	4.83	4.92	4.98
Outer	4.77	4.98	4.53	4.68	4.74	4.83	4.86	4.86
Source of	sums of	degrees of	Maan squares			critical E-		
variation	squares (SS)	freedom (df)	(MS)	F-value	P-value	value		
Between groups	0.112616667	7	0.016088095	1.0531397	0.4290891	2.5435343		
Within groups	0.29025	19	0.015276316					
Total	0.402866667	26						
within-sd	0.123597							
effective n	6.52							
S bb	0.011159							
u [*] _{bb}	0.027574							
U bb	0.027574							
u _{bb} (rel.)	0.568411							

Lead:

Centre	45.15	44.40	44.95					
Inner	46.15	45.25	44.90	45.20	44.90	44.65	44.60	44.30
Middle	46.65	45.85	46.10	45.35	45.45	46.50	45.75	45.55
Outer	46.75	47.30	46.25	46.05	45.95	46.30	45.70	45.60
Source of	cume of	dogroop of	Moon cauarac			critical E		
variation	squares (SS)	freedom (df)	(MS)	F-value	P-value	value		
Between groups	2.400462963	7	0.34292328	0.516594	0.8109317	2.5435343		
Within groups	12.6125	19	0.663815789					
Total	15.01296296	26						
within-sd	0.814749							
effective n	6.52							
s _{bb}	0.000000							
u [*] bb	0.181768							
U _{bb}	0.181768							
u _{bb} (rel.)	0.398502							

Antimony

Centre	59.80	50.70	60.10					
Inner	38.47	53.40	59.00	50.50	39.45	48.77	45.06	51.00
Middle	53.00	55.50	51.70	71.20	51.90	55.00	46.23	46.28
Outer	66.20	62.90	49.35	50.70	46.19	61.60	58.40	63.30
Source of	sums of	degrees of	Mean squares			critical F-		
variation	squares (SS)	freedom (df)	(MS)	F-value	P-value	value		
Between groups	300.2586833	7	42.89409762	0.628084	0.7269694	2.5435343		
Within groups	1297.577783	19	68.29356754					
Total	1597.836467	26						
within-sd	8 263992							
	0.203332							
effective n	6.52							
s _{bb}	0.000000							
u [*] bb	1.843676							
U _{bb}	1.843676							
u _{bb} (rel.)	3.443262							

Tin:

Centre	19.20	17.67	17.67					
Inner	18.50	18.23	19.53	18.87	19.50	18.50	18.20	19.17
Middle	18.97	19.40	18.87	18.63	20.07	17.50	18.77	19.93
Outer	19.50	19.33	19.07	18.53	18.93	18.60	18.23	18.97
Source of variation	sums of squares (SS)	degrees of freedom (df)	Mean squares (MS)	F-value	P-value	critical F- value		
Between groups	4.295823045	7	0.613689006	1.72377945	0.16305956	2.5435343		
Within groups	6.764259259	19	0.356013645					
Total	11.0600823	26						
within-sd	0.596669							
effective n	6.52							
s _{bb}	0.198821							
u [*] _{bb}	0.133115							
U _{bb}	0.198821							
u _{bb} (rel.)	1.056032							

Vanadium:

Centre	74.3	75.1	76.3					
Inner	76.8	76.1	76.0	73.6	77.2	75.0	76.8	76.1
Middle	75.9	74.4	76.0	75.3	75.5	76.2	74.5	77.6
Outer	75.3	80.3	77.1	77.4	76.5	77.2	75.6	75.6
Source of	sums of	degrees of	Mean squares	E walwa	Dyrakia	critical F-		
Variacion	squares (55)	needoni (di)	(1915)	r-value	P-Value	value		
Between groups	4.418981481	7	0.631283069	0.2916037	0.9490303	2.5435343		
Within groups	41.13245885	19	2.164866255					
Total	45.55144033	26						
within-sd	1 471348							
	1.471540							
effective n	6.52							
s _{bb}	0.000000							
u [*] _{bb}	0.328254							
U bb	0.328254							
u _{bb} (rel.)	0.431563							

Zirconium:

Centre	68.30	67.20	65.80					
Inner	69.40	65.60	67.60	65.70	66.90	66.40	67.20	67.20
Middle	67.20	67.70	67.30	68.10	65.60	67.30	66.80	68.60
Outer	69.00	69.60	65.70	67.10	67.20	65.70	66.00	65.80
Source of variation	sums of squares (SS)	degrees of freedom (df)	Mean squares (MS)	F-value	P-value	critical F- value		
Between groups	11.985	7	1.712142857	1.3452635	0.2837799	2.5435343		
Within groups	24.18166667	19	1.272719298					
Total	36.16666667	26						
within-sd	1.128149							
effective n	6.52							
s _{bb}	0.259637							
u [*] bb	0.251687							
U _{bb}	0.259637							
u _{bb} (rel.)	0.386877							