

BERICHT

zur

Zertifizierung der Massenanteile verschiedener Legierungs- und Begleitelemente in einer PbCa-Akkumulator-Legierung

Zertifiziertes Referenzmaterial

ERM[®]-EB102a

November 2009

Koordinator: Dr. Sebastian Recknagel BAM Bundesanstalt für Materialforschung und -prüfung Richard-Willstätter-Straße 11 12489 Berlin Tel.: 030/8104 1111 Fax.: 030/8104 1117

Arbeitsgruppe I.11 "Metallanalytik; anorganische Referenzmaterialien"

ZUSAMMENFASSUNG

Dieser Bericht beschreibt die Präparation, die Analyse und die Zertifizierung einer Blei-Akku-Legierungen (PbCaSn) mit der Bezeichnung Zertifiziertes Referenzmaterial ERM[®]-EB102a.

Das zertifizierte Referenzmaterial ist für die Funken-Emissionsspektrometrie (F-OES) und die Röntgenfluoreszenzanalyse (RFA) vorgesehen. Es ist erhältlich in Form von ca. 40 mm hohen Zylindern mit einem Durchmesser von etwa 40 mm.

Folgende Massenanteile und Unsicherheiten sind zertifiziert:

Element	Massenanteil in %	Unsicherheit* in %
Ca	0,0635	± 0,0022
Sn	1,01	± 0,05
-	in mg/kg	in mg/kg
AI	124	± 11
Ag	170	± 6
Bi	73,7	± 2,6
Cu	1,3	± 0,4
TI	30,2	± 1,5

Details zur Herstellung des Referenzmaterials sowie zur Untersuchung der Homogenität und zu den analytischen Methoden sind in diesem Bericht beschrieben. Am Zertifizierungs-Ringversuch beteiligten sich 14 Laboratorien.

Inhaltsverzeichnis

Seite

1. Einleitung	5
1.1 Anwendungsbereich	5
1.2 Herstellung von Referenzmaterialien	5
2. Probenherstellung	5
3. Beteiligte Laboratorien	6
4. Homogenitätsuntersuchungen	6
4.1 Qualitative Untersuchung der Mikrohomogenität	8
4.2 Berechnung der Gesamtunsicherheit in Anlehnung an ISO-Guide 35	9
5. Zertifizierung	10
5.1 Verwendete Abkürzungen der Analysenverfahren	10
5.2 Kurzbeschreibung der Analysenverfahren	10
5.3 Kalibrierung	10
5.4 F-OES Ringversuch	10
5.5 Analysenergebnisse und statistische Betrachtung	13
6 Hinweise für den Benutzer	26
7. Literatur	26
8. Information und Probenvertrieb	26
9. Anhang	27

1. Einleitung

1.1 Anwendungsbereich

In der metallverarbeitenden Industrie werden bei der Eingangskontrolle von Rohmaterialien wie Schrotten, bei der Produktionsüberwachung (z.B. Kontrolle der chemischen Zusammensetzung von Schmelzen, der Einstellung von Legierungen) und bei der abschließenden Qualitätskontrolle der Produkte wegen des geringen Arbeits- und Zeitaufwandes bevorzugt Funken-Emissionsspektrometrie (F-OES) und Röntgenfluoreszenzanalyse (RFA) eingesetzt.

Für die Kalibrierung und zur Driftkontrolle bzw. -korrektur der Geräte sind geeignete Kalibrier- und Rekalibrierproben notwendig. Beim ZRM ERM[®]-EB102a handelt es sich um eine Bleilegierung auf Blei-Calcium-Basis. Haupteinsatzgebiet von PbCa-Legierungen ist die Herstellung von Bleigittern für den Einsatz in Blei-Akkumulatoren.

1.2 Herstellung von Referenzmaterialien

Die Produktion zertifizierter Referenzmaterialien erfolgt entsprechend dem Bedarf der Industrie. Das in diesem Bericht beschriebene ZRM ist die Nachfolgeprobe für das ausverkaufte ZRM ERM[®]-EB102. Aus dessen Absatz kann auf einen vorhandenen Bedarf für diesen Typ von ZRM geschlossen werden. Die gewünschten Massengehalte der einzelnen wurden Elemente dem geplanten ZRM im Arbeitsausschuss "Blei" des in Chemikerausschusses der GDMB Gesellschaft für Bergbau, Metallurgie, Rohstoff- und Umwelttechnik diskutiert und festgelegt. Im Rahmen dieses Ausschusses wurde auch der Zertifizierungsringversuch für beide ZRM durchgeführt.

Das Ausgangsmaterial wird in einem geeigneten Industriebetrieb entsprechend den Vorgaben hergestellt bzw. aus der laufenden Produktion entnommen und ggf. umgearbeitet. Nach einem Homogenitätstest werden die Massenkonzentrationen der interessierenden Elemente in einem Zertifizierungsringversuch ermittelt. Für den Ringversuch werden Laboratorien ausgewählt, die ihre Befähigung durch die Mitarbeit an vorangegangenen Verfahrensentwicklungen oder Zertifizierungen für die zu bestimmenden Elemente gezeigt haben. Ein Qualifizierungsringversuch wurde deshalb vor dem eigentlichen Zertifizierungsringversuch nicht vorgenommen.

Grundlage für die Zertifizierung sind die relevanten ISO-Guides [1-3], der "Leitfaden für die Entwicklung von BAM-Referenzmaterialien" [4] sowie die "Technical Guidelines for the Production and Acceptance of a European Reference Material" [5].

Nachfolgend beschrieben ist die Zertifizierung des zertifizierten Referenzmaterials ERM[®]-EB102a.

2. Probenherstellung

Als Rohmaterial für ERM[®]-EB102a diente ein industrielles Produkt der Fa. BSB Recycling GmbH, Braubach. Das Material lag in Form gegossener Barren vor. Bei der Firma SUS Nell, Oberhausen wurden die Barren zerkleinert und in mehreren Chargen gemischt und aufgeschmolzen. Aus den Schmelzen wurden Zylinder gegossen (ca. 350 Stück). Jeder Zylinder wurde mit einem Stempel versehen, aus dem die Charge sowie die Nummer des Gusses ersichtlich ist (Bsp.: Zylinder E25 ist der 25. Zylinder, der aus der 5. Charge gegossen wurde). Die einzelnen Zylinder haben einen Durchmesser von ca. 40 mm und eine Höhe von 40 – 45 mm.

3. Beteiligte Laboratorien

Homogenitätstest:

 BAM Bundesanstalt f
ür Materialforschung und -pr
üfung, Berlin AG I.46 Anorganische Prozessanalytik - R
öntgenfluoreszenzanalyse AG VI.43 Schicht- und Oberfl
ächenanalytik

Chemische Analysen zur Zertifizierung:

- Aurubis AG, Hamburg, Deutschland
- BAM Bundesanstalt für Materialforschung und -prüfung, Berlin, Deutschland
- BERZELIUS Stolberg GmbH, Stolberg, Deutschland
- BSB Recycling GmbH, Braubach, Deutschland
- Exide Technologies GmbH, Bad Lauterberg, Deutschland
- GfE Fremat GmbH, Freiberg, Deutschland
- Johnson Controls Sachsen-Batterien GmbH & Co. KG, Zwickau, Deutschland
- Johnson Controls Power Solutions Europe, Guardamar del Segura, Spanien
- Johnson Controls, VB Autobatterie GmbH & Co. KGaA, Hannover, Deutschland
- Muldenhütten Recycling und Umwelttechnik GmbH, Freiberg, Deutschland
- Nyrstar, Overpelt, Belgien
- ThyssenKrupp Steel AG, Duisburg, Deutschland
- TU Bergakademie Freiberg, Freiberg, Deutschland
- WESER-METALL GmbH, Nordenham, Deutschland

Statistische Auswertung:

- BAM Bundesanstalt für Materialforschung und -prüfung, Berlin

4. Homogenitätsuntersuchungen

Untersuchungen zur Homogenität des Referenzmaterials wurden an der BAM an ausgewählten zylindrischen Proben mittels F-OES (SpectroMaxx, Fa. Spectro, Kleve) sowie an jeder einzelnen Probe mittels RFA (MagiX Pro, Panalytical, Almelo, Niederlande) durchgeführt, wobei in der Bleimatrix nur die Legierungselemente Ca, Sn und AI mit RFA bestimmbar waren.

Für die Homogenitätsbestimmung des Gesamtbatches (axial) mit Hilfe der F-OES wurden die in Tab. 1 aufgeführten Zylinder ausgewählt (ca. 8 % der Gesamtprobenzahl nach ASTM-Norm E 826-90 [6]).

A1	B2	C1	D1	E1	F1	H1	12	J1	K1	L2	M2
A20	B20	C20	D20	E20	F20	H19	I21	J20	K21	L20	M21
A38	B38	C38	D38	E39	F38	H39	138	J38	K37	L39	M42

Tab. 1: Für Homogenitätstest ausgewählte Probenzylinder, ERM[®]-EB102a

Jeder Zylinder wurde in sechs Durchgängen je zwei Mal abgefunkt.

Zur Überprüfung der Einzelzylinder auf Inhomogenitäten über die Fläche (mögliche Seigerungen von außen nach innen) sowie über die Höhe des Zylinders (mögliche Seigerungen von oben nach unten) wurden die Zylinder A1, B20 und C38 in der Mitte zerteilt und anschließend am Fuß und in der Mitte je 13 mal abgefunkt.. Darüber hinaus wurden die Proben A1, B20, C38, D1, E20, F38, H1, I21, J38, K1, L2, L20 und M42 ringförmig abgefunkt (Außenring: 6 Abfunkungen, Innenring; 6 Abfunkungen und Mitte: 1 Abfunkung).

Da das Erstarren des flüssigen Stangenmaterials überwiegend konzentrisch von außen nach innen erfolgt, kann davon ausgegangen werden, dass in konzentrischen ringförmigen Bereichen der Probenzylinder die Massenanteile der Elemente jeweils weitgehend konstant Agglomerationen während sind, abgesehen von des Erstarrens oder Korngrenzenanreicherungen von Spurenelementen. Wenn diese im mg-Bereich auftretenden Inhomogenitäten nicht vorliegen, repräsentieren die Ergebnisstreuungen von Abfunkungen in den jeweiligen ringförmigen Bereichen weitgehend die Messgeräte-Streuung. Es ist daher möglich, diese Verfahrensstreuung näherungsweise zu ermitteln und bei der Berechnung des Unsicherheitsbeitrages durch mögliche Inhomogenitäten zu berücksichtigen.

Die Wiederholbarkeit der Messung $s_{Verfahren}$ wird als mittlere Streuung innerhalb der Bereiche "Innenring" und "Außenring" definiert:

$$s_{\text{Verfahren}} = \sqrt{\frac{s_{\text{Innenring}}^2 + s_{\text{Außenring}}^2}{2}}$$

Die Unsicherheitsbeiträge aus dem Homogenitätstest innerhalb einer Probe sowie über den Gesamtbatch der Proben werden wie folgt berechnet, wobei $s_{Verfahren}$ aus wie oben beschrieben abgeschätzt wurde:

$$s_{\rm eff} = \sqrt{s_{\rm Probe}^2 - s_{\rm Verfahren}^2}^{*}$$

Wenn die tatsächlichen Inhomogenitätsbeiträge der Proben in der Größenordnung der Verfahrenspräzision liegen, können die Terme unter der Quadratwurzel zufällig negativ sein, so dass die effektiven Standardabweichungen nicht berechnet werden können. Der in diesem Fall "verdeckte" Inhomogenitätsbeitrag u_{bb} ist dann nach folgender Gleichung aus der Verfahrenspräzision zu ermitteln:

$$u_{bb} = \sqrt{\frac{s_{Verfahren}^2}{p}} \cdot \sqrt[4]{\frac{2}{\nu - 1}}$$

Dabei ist *p* die Anzahl der Messungen bzw. Analysen zur Ermittlung der Verfahrenspräzision und $\nu - 1$ ist der zur Berechnung von s²_{Verfahren} zugehörige Freiheitsgrad.

Bei der Homogenitätsuntersuchung des Materials wurde TI nicht mitgemessen. Aus dem Verteilungsverhalten des Elements in ERM[®]-EB101a – die Matrix ist sehr ähnlich und die Gehalte an Thallium liegen in der gleichen Größenordnung – wurde ein Unsicherheitsbeitrag für mögliche Inhomogenitäten für dieses Element abgeschätzt.

*eigentlich: $s_{\text{radial, eff}} = \sqrt{\frac{s_{\text{radial}}^2 - s_{\text{Verfahren}}^2}{n_0}}$, hier $n_0 = 1$ als "worst-case-Abschätzung ($s_{\text{axial, eff}}$ ebenso)

Zur Untersuchung der Homogenität der Gesamtcharge wurden alle Probenzylinder mit der RFA analysiert. Vor der Messung wurden die Proben auf einheitliche Höhe abgedreht und anschließend gefräst. Die Oberflächenbehandlung durch Fräsen führte zu niedrigeren

Streuungen als durch Drehen. Die gemessenen Werte wurden driftkorrigiert. Dazu wurde eine Probe als Driftkontrollprobe definiert, die im Verlauf der Messung in regelmäßigen Abständen gemessen wurde. Diese Probe wurde auch am Anfang der Messung zur Ermittlung der verfahrensbedingten Streuung insgesamt 4 mal hintereinander gemessen. Aufgrund der schweren Matrix, die nur ein sehr geringes Eindringen der Röntgenstrahlung in die Probe erlaubt, und den niedrigen Gehalten der meisten zertifizierten Elemente waren nur die Elemente Ca, Al und Sn mit der RFA bestimmbar. Da alle Proben einzeln aus jeweils einem Schmelzansatz verschiedener Chargen gegossen wurden, sollte durch RFA-Messungen sichergestellt werden, dass alle Probenserien (Chargen) die gleiche Zusammensetzung haben. Es wurde keine Charge gefunden, die sich von den anderen signifikant unterschied.

Die aus dem Homogenitätstest mit der RFA erhaltenen Unsicherheitsbeiträge wurden nicht zur Berechnung der Gesamtunsicherheit herangezogen, da dies zusammen mit dem Unsicherheitsbeitrag aus dem Homogenitätstest über den Gesamtbatch mit der F-OES zu einer Überschätzung der Unsicherheit geführt hätte.

4.1 Qualitative Untersuchung der Mikrohomogenität

Um den Einsatzbereich des ZRMs einzugrenzen wurde die polierte Deckfläche eines Zylinders des Materials einer Mikrobereichs-Analyse mit der Rasterelektronenmikroskopie (REM) und der energiedispersiven Röntgenfluoreszenzspektroskopie (EDX) für unterworfen.

Abb. 1: REM-Aufnahme, V=1000 x

Abb. 3: REM-Aufnahme, V=5000 x Abb. 2: REM-Aufnahme, V=2000 x

Sowohl im REM Bild (Abb. 3) als auch im EDX Verteilungsbild (Abb. 5) kann man die µmskalierte (~ 2 ... 10 µm) Inhomogenität des ZRM bezüglich der Elementzusammensetzung erkennen. Deshalb ist das Referenzmaterial für eine Kalibrierung von Verfahren der Mikrobereichsanalyse wie z.B. EDX, SIMS und AES nicht geeignet.

4.2 Berechnung der Gesamtunsicherheit in Anlehnung an ISO-Guide 35

Die Gesamtunsicherheit der zertifizierten sowie eines Teils der zur Information angegebenen Werte berechnet sich als Summe der Unsicherheitsbeitrage aus dem Zertifizierungsringversuch sowie aus den Unsicherheitsbeiträgen aus axialer und radialer Homogenitätsprüfung nach:

$$u_{\text{gesamt}} = \sqrt{\frac{s_{\text{Ringversuch}}^2 + s_{\text{axial, eff}}^2 + s_{\text{radial, eff}}^2}{n}} \text{ bzw.}$$
$$u_{\text{gesamt}} = \sqrt{\frac{s_{\text{Ringversuch}}^2 + u_{\text{bb, axial}}^2 + u_{\text{bb, radial}}^2}{n}}$$

bzw. Mischformen der Gleichungen mit n = Anzahl der zur Berechnung des Mittelwertes aus dem Zertifizierungsringversuch verwendeten Datensätze. Die erweiterte Unsicherheit ergibt sich dann durch Multiplikation von u_{gesamt} mit dem Erweiterungsfaktor k = 2.

$$U = 2 \cdot u_{\text{gesamt}} = 2 \cdot \sqrt{\frac{s_{\text{Ringversuch}}^2}{n} + s_{\text{axial, eff}}^2 + s_{\text{radial, eff}}^2}$$

Die Berechung der einzelnen Unsicherheitsbeiträge (Homogenität, Ringversuch) sowie der Gesamtunsicherheit ist im Anhang /Tabellen) wiedergegeben.

5. Zertifizierung

An der chemischen Analyse der Proben beteiligten sich 14 Laboratorien. Es handelte sich dabei hauptsächlich um Laboratorien der metallverarbeitenden Industrie, die über eine große Erfahrung auf dem Gebiet der Analytik von Blei-Legierungen verfügen.

In der Probe wurden die Massenanteile der Elemente Sn, Ca, Al, Ag, Bi, Sb, Tl, Te, Cu, In, Zn und As aus jeweils 6 Einzelwerten (in Ausnahmefällen nur 4) aus getrennten Einwaagen ermittelt. Die Labors erhielten je einen Zylinder des ZRM. Die Probenpräparation (Zerspanen) führte jedes Labor selbst durch. Folgende Zylinder aus verschiedenen Gusschargen wurden zur nasschemischen Analytik verschickt:

A38	B38	C1	D38	E20	E39	H19	H39	12	K21	K37	L39	M2	M42
-----	-----	----	-----	-----	-----	-----	-----	----	-----	-----	-----	----	-----

5.1 Verwendete Abkürzungen der Analysenverfahren

- A Atomabsorptionsspektrometrie mit Flammenatomisierung (F AAS)
- I Plasma-Emissionsspektrometrie (ICP-OES)
- IMS Plasma-Massenspektrometrie (ICP-MS)
- EA Graphitrohr- Atomabsorptionsspektrometrie (ETAAS)
- P Spektrophotometrie
- -NF Pb-Abtrennung als Nitrat

5.2 Kurzbeschreibung der Analysenverfahren

Die angewandten Analysenverfahren der beteiligten Laboratorien sind in Tabelle 3 aufgelistet. Angegeben sind

- die eingesetzte Probenmenge
- die Probenvorbereitung (Aufschluss etc.)
- Angaben zur Kalibrierung
- die Bestimmungsmethode

5.3 Kalibrierung

Bei allen Analysenverfahren, für die eine Kalibrierung notwendig ist, wird ein Kalibrierverfahren mit Bezugslösungen eingesetzt. Für die Herstellung der Bezugslösungen wurden die Labors aufgefordert, nur reine Metalle und Verbindungen mit exakt bekannter Stöchiometrie und Reinheit oder kommerziell erhältliche Standardlösungen, die zuvor mit gravimetrisch erstellten Kalibrierlösungen überprüft wurden, als Arbeitsstandard zu verwenden. In der Regel erfolgte die Matrixangleichung mit Feinblei. In einigen Fällen erfolgte eine Matrixabtrennung in den Probenlösungen vor der Analytbestimmung.

5.4 F-OES Ringversuch

Unabhängig von der Zertifizierung wurde das ZRM im Rahmen einer Eignungsprüfung für Funken-Emissionsspektrometrie als Testprobe an die teilnehmenden Labors verschickt. Es nahmen insgesamt 17 Labors an dieser Eignungsprüfung teil. Die Ergebnisse dieses Ringversuchs wurden für die Zertifizierung nicht berücksichtigt.

Trotzdem wurden die Massenanteile einiger zusätzlicher Elemente, die nicht Bestandteil der Zertifizierung waren, in diesem Ringversuch ermittelt. Diese werden in der folgenden Tabelle 2 sowie im Zertifikat als zusätzliche Information angegeben.

Tab. 2: Massenanteile in mg/kg von im FOES-RV zusätzlich bestimmten Elementen in $\text{ERM}^{\text{®}}$ -EB102a

Element	S	Fe	Na	Mg
Mittelwert			3,6	
StdAbw.			0,9	
obere Grenze	< 3	< 2		< 1
n	12	6	8	6

Labor-	Ein-	Löseprozedur	Bestimmungsmethode	Kalibrierung	Norm-
Nr.	waage				verfahren
1	1 g	Lösen mit HNO ₃	FAAS	Zertifizierte Stammlösungen,	
		Lösen mit HCI (Sn)	Spektrophotometrie (As)	Matrixanpassung mit Pb	
		Lösen mit HCI (Ag), HCI-Uberschuss	ICP-OES (Te)		
2	2 g	Lösen in Weinsäure-HNO ₃ -Gemisch (Sn, Al, Bi, Ag, Tl)	ICP-OES		prEN 13800
	10 g	Lösen mit HNO ₃ , Nitratfällung (Te, Cu, In, Zn, As)	ICP-OES		prEN 14029
3	2 g	Lösen in Weinsäure-HNO ₃ -Gemisch	ICP-OES	Zertifizierte Stammlösungen, Matrixanpassung mit Pb	prEN 13800
4	2 g	Lösen in Weinsäure-HNO3-Gemisch	ICP-OES	Zertifizierte Stammlösungen,	prEN 13800
				Matrixanpassung mit Pb	
5	2 g	Lösen in Weinsäure-HNO ₃ -Gemisch	ICP-OES	Zertifizierte Stammlösungen (Sn, Al, Ca) bzw. Lösungen aus Metall (Ag, Cu, Bi), Matrixanpassung mit Pb	prEN 13800
7	2 g	Lösen in Weinsäure-HNO ₃ -Gemisch	ICP-OES	Zertifizierte Stammlösungen, Matrixanpassung mit Pb	prEN 13800
8	1,5 g	Lösen in Weinsäure-HNO ₃ -Gemisch	FAAS (Ca, Ag, Cu, Zn) ICP-OES (Sn, Al, Bi) GFAAS (TI)	Kommerzielle Standardlösungen	prEN 13800
9	2 g	Lösen in Weinsäure-HNO ₃ -Gemisch	ICP-OES	Zertifizierte Stammlösungen, Matrixanpassung mit Pb	prEN 13800
10	2 g	Lösen in Weinsäure-HNO3-Gemisch (Cu, Bi)	ICP-OES	Aus Metallen angesetzte Stamm-	prEN 13800
	10 g	Lösen mit HNO ₃ , Nitratfällung (TI)	ICP-OES	lösungen, Matrixanpassung mit Pb	
	0,1 g	Lösen in Weinsäure-HNO ₃ -Gemisch (Sb, Tl, Te, Cu, Zn, As)	ICP-MS		
	10 g	Lösen mit HNO ₃ , Nitratfällung (Ag, Al)	FAAS	Stammlsg. aus Ag- bzw. Al-Metall	
	1 g	Lösen in HBr/Br ₂ , Extraktion (Sn)	FAAS	Stammlsg. aus Sn-Metall	
11	2 g	Lösen in Weinsäure-HNO ₃ -Gemisch	ICP-OES		prEN 13800
12	2 g	Lösen in Weinsäure-HNO3-Gemisch	ICP-OES (Ca, Sn, Al)	Zertifizierte Stammlösungen,	
			FAAS (Bi, Ag, Cu) GFAAS (Sb, Ni)	Matrixanpassung mit Pb	
13	0,25 g	Lösen mit HNO ₃	ICP-OES (Ca, Sn, Al, Ni, P) ICP-MS (TI, As, Sb, Ag, Cu)	Aus Primärsubstanzen hergestellte Lösungen, Matrixanpassung mit Pb	

Tab. 3: Analysenverfahren für die Elementbestimmung in ERM[®]-EB102a

5.5 Analysenergebnisse und statistische Betrachtung

Die Ergebnisse des Zertifizierungs-Ringversuches für ERM[®]-EB102a sind in den Tabellen in Abbildungen 1 bis 11 aufgelistet. Die Tabellen zeigen neben den Einzelwerten der Laboratorien die jeweiligen Mittelwerte sowie die dazugehörigen Standardabweichungen.

In den dazugehörigen Abbildungen sind als Punkte jeweils die Labormittelwerte gekennzeichnet, der zugehörige Fehlerbalken zeigt die Standardabweichung, berechnet aus den Labor-Einzelwerten. Die durchgezogene Linie markiert den zertifizierten Wert (Mittelwert der Mittelwerte), die gestrichelten Linien jeweils die Standardabweichung, berechnet aus den Labormittelwerten. Die gelb unterlegten Zahlen in den Tabellen markieren als Grubbs-Ausreißer eliminierte Labormittelwerte. Für einige Elemente haben verschiedenen Teilnehmer "kleiner als" – Werte angegeben. Dabei handelt es sich jeweils um die Bestimmungsgrenzen der Labors.

Die Mittelwerte der Messreihen aller Laboratorien wurden mt Hilfe des Grubbs-Tests auf Ausreißer getestet (Signifikanzniveau 95%). Als Ausreißer erkannte Werte wurden den entsprechenden Laboratorien mitgeteilt und um eine Nachanalyse bzw. Stellungnahme gebeten. Bei erfolgter Nachanalyse wurden die Ausreißer durch die neuen Analysendaten ersetzt. Analysendaten, die aufgrund von Verfahrensfehlern zurückgezogen wurden, sind in den entsprechenden Tabellen nicht enthalten. Anschließend wurden alle Analysendaten erneut mit dem Grubbs-Test untersucht (Signifikanzniveau 95%). Die sich ergebenden Ausreißer sind in den jeweiligen Tabellen entsprechend gekennzeichnet und wurden bei der Berechnung des zertifizierten Wertes nicht berücksichtigt.

Ein statistischer Test auf Varianzenhomogenität (Cochran-Test) wurde nicht durchgeführt.

Lab./Meth.	14/A	13/I	6/I	12/I	5/I	7/I	9/I	8/A	1/A	4/I(R)	3/I	Ges.
EW [%]	0,0610	0,0614	0,0623	0,0612	0,0630	0,0625	0,0627	0,0655	0,0664	0,0672	0,0688	Ν
	0,0579	0,0616	0,0610	0,0624	0,0618	0,0629	0,0636	0,0646	0,0667	0,0672	0,0673	11
	0,0573	0,0611	0,0615	0,0621	0,0616	0,0631	0,0636	0,0662	0,0660	0,0677	0,0686	
	0,0587	0,0611	0,0617	0,0616	0,0622	0,0634	0,0638	0,0657	0,0658	0,0633	0,0676	
	0,0567	0,0619	0,0613	0,0615	0,0623	0,0641	0,0631	0,0647	0,0664	0,0693	0,0676	
	0,0576	0,0609	0,0617	0,0614	0,0625	0,0634	0,0629	0,0658	0,0658	0,0681	0,0680	
M [%]	0,0582	0,0613	0,0616	0,0617	0,0622	0,0632	0,0633	0,0654	0,0662	0,0671	0,0680	0,0635
s [%]	0,00154	0,00037	0,00044	0,00046	0,00050	0,00056	0,00046	0,00064	0,00037	0,00203	0,00060	0,00292
<u>s</u> [%]												0,00072
s _{rel}	0,02641	0,00607	0,00715	0,00753	0,00811	0,00879	0,00723	0,00974	0,00561	0,03029	0,00881	0,04608

Abb. 1: ERM[®]-EB102a, Ergebnisse für Ca

Lab./Meth.	11/I	4/I(R)	10/A	13/I	8/I	2/I	6/I	9/I	12/I	7/I	5/I	1/A	3/I	Ges.
EW [%]	0,82	0,9279	0,968	1,000	1,021	1,0087	1,0240	1,0231	1,016	1,0161	1,052	1,048	1,050	N
	0,79	0,9325	0,972	0,999	1,000	1,0155	1,0219	1,0209	1,042	1,0383	1,032	1,043	1,050	12
	0,83	0,9375	0,954	0,998	1,009	1,0219	1,0130	1,0244	1,029	1,0374	1,030	1,034	1,050	
	0,84	[0,8774]	0,943	1,007	1,006	0,9956	1,0080	1,0271	1,027	1,0248	1,036	1,036	1,050	
	0,84	0,9451	0,967	0,995	1,015	1,0084	1,0119	1,0278	1,024	1,0362	1,044	1,041	1,050	
	0,82	0,9402	0,969	0,997	1,017	1,0249	1,0195	1,0146	1,030	1,0355		1,036	1,070	
M [%]	0,824	0,937	0,962	0,999	1,011	1,013	1,016	1,023	1,028	1,031	1,039	1,040	1,053	1,013
s [%]	0,0183	0,0067	0,0113	0,0041	0,0078	0,0107	0,0063	0,0048	0,0085	0,0090	0,0091	0,0053	0,0082	0,0334
<u>s</u> [%]														0,008
S _{rel}	0,0223	0,0071	0,0117	0,0041	0,0077	0,0105	0,0062	0,0047	0,0083	0,0087	0,0088	0,0051	0,0078	0,0330

Grubbs 99%

Abb. 2: ERM[®]-EB102a, Ergebnisse für Sn

Lab./Meth.	8/I	3/I	14/A	12/I	9/I	13/I	4/I(R)	10/A-NF	5/I	1/A	7/I	2/I	Ges.
EW [µg/g]	107	119,8	121,8	118,5	121,6	122	126,4	125,6	127,7	128	132,3	136,0	N
	112	118,0	120,0	121,9	120,6	122	126,6	131,9	125,7	131	132,2	133,7	12
	110	120,1	113,9	121,0	121,1	122	127,5	129,1	128,9	129	132,1	130,5	
	112	117,2	119,8	120,2	121,3	122	120,0	125,4	126,8	130	130,5	132,8	
	112	118,2	118,2	119,1	121,5	123	127,0	117,6	125,9	128	129,4	132,5	
	111	119,1	121,6	121,8	121,1	122	128,7	128,9	125,6	137	129,4	132,7	
M [µg/g]	110,7	118,7	119,2	120,4	121,2	122,2	126,0	126,4	126,8	130,5	131,0	133,0	123,8
s [µg/g]	1,97	1,12	2,92	1,41	0,36	0,41	3,07	4,96	1,32	3,39	1,39	1,80	6,34
īs [µg/g]													2,01
s _{rel}	0,018	0,009	0,024	0,012	0,003	0,003	0,024	0,039	0,010	0,026	0,011	0,013	0,051

Abb. 3: ERM[®]-EB102a, Ergebnisse für Al

Lab./Meth.	10/A-NF	9/I	2/I	13IMS	6/I	5/I	7/I	3/I	4/I(R)	12/A	8/A	1/A	Ges.
EW [µg/g]	162,4	170,7	165,90	167	170	168,2	173,5	166	173,0	172,6	176	180	Ν
	165,7	167,1	168,70	169	167	168,0	173,1	170	172,3	173,8	175	177	12
	165,1	166,4	166,20	169	167	168,1	172,8	171	173,5	173,2	175	174	
	165,1	166,9	168,90	168	169	168,9	170,2	170	166,1	172,0	176	179	
	165,9	166,1	166,20	167	169	170,0	167,9	177	174,5	171,0	176	175	
	163,6	161,3	168,70	166	168	169,1	167,5	177	173,4	172,2	174	180	
M [µg/g]	164,6	166,4	167,4	167,7	168,3	168,7	170,8	171,8	172,1	172,5	175,3	177,5	170,3
s [µg/g]	1,36	3,01	1,47	1,21	1,21	0,77	2,69	4,36	3,04	0,98	0,82	2,59	3,77
īs [µg/g]													1,96
s _{rel}	0,008	0,018	0,009	0,007	0,007	0,005	0,016	0,025	0,018	0,006	0,005	0,015	0,022

Abb. 4: ERM[®]-EB102a, Ergebnisse für Ag

Lab./Meth.	6/I	12/A	8/I(R)	2/I	1/A	9/I	13/IMS	10/I	3/I	4/I(R)	5/I	7/I	Ges.
EW [µg/g]	69	71,94	69,7	73,88	72	72,28	74,7	75,39	76,2	76,66	77,8	77,46	N
	69	70,54	72,6	72,15	72	72,35	74,8	75,62	76,1	75,84	77,1	78,30	12
	68	71,12	69,7	71,46	73	72,33	75,7	75,86	77,1	75,56	77,1	81,08	
	65	69,27	69,3	71,89	72	72,68	75,0	74,92	79,9	74,36	77,6	80,37	
	65	69,50	72,0	70,70	73	72,01	74,8	[67,38]	69,7	77,70	77,0	80,13	
	66	68,86	71,0	72,29	71	71,69	73,2	76,76	77,3	76,68	77,9	80,60	
M [µg/g]	67,00	70,21	70,72	72,06	72,17	72,22	74,70	75,71	76,05	76,13	77,42	79,66	73,67
s [µg/g]	1,897	1,195	1,367	1,059	0,753	0,337	0,820	0,682	3,401	1,148	0,397	1,436	3,555
īs [µg/g]													1,208
S _{rel}	0,028	0,017	0,019	0,015	0,010	0,005	0,011	0,009	0,045	0,015	0,005	0,018	0,048

Abb. 5: ERM[®]-EB102a, Ergebnisse für Bi

Lab./Meth.	2/I-NF	4/I(R)	2/I	10/IMS	9/I	11/I	8/A	7/I	13/IMS	5/I	10/I	3/I	1/A	12/EA	Ges.
EW [µg/g]	0,632	0,407	0,83	1,13	0,99	0,978	1,23	1,131	1,3	1,6	0,53	1,77	1,9	2,09	Ν
	0,524	0,577	0,83	0,95	0,85	0,904	1,16	1,133	1,5	1,4	1,02	1,78	2,1	1,87	14
	0,553	1,330	0,78	1,01	1,22	1,210	1,20	1,138	1,4	1,4	1,01	1,80	2,3	2,97	
	0,539	0,263	0,83	1,02	0,98	0,817	1,21	1,410	1,5	1,4	2,46	1,76	2,0	1,70	
	0,560	0,554	0,72	0,93	0,93	1,269	1,16	1,234	1,5	1,4	3,04	1,81	2,0	1,53	
	0,558	0,559	1,04	0,86	1,00	1,028	1,24	1,240	1,5	1,5	2,21	1,79	2,2	2,38	
M [µg/g]	0,56	0,62	0,84	0,98	1,00	1,03	1,20	1,21	1,45	1,45	1,71	1,79	2,08	2,09	1,29
s [µg/g]	0,037	0,371	0,108	0,095	0,123	0,175	0,034	0,108	0,084	0,084	0,994	0,019	0,147	0,525	0,496
īs [µg/g]															0,183
s _{rel}	0,067	0,602	0,129	0,096	0,124	0,169	0,028	0,089	0,058	0,058	0,581	0,010	0,071	0,251	0,385

Abb. 6: ERM[®]-EB102a, Ergebnisse für Cu

Lab./Meth.	3/I	2/I	8/A	1/A(R)	13/IMS	10/IMS	4/I(R)	9/I	7/I	Ges.
EW [µg/g]	28,58	28,90	28,25	29,0	29,4	27,8	31,19	30,89	32,43	N
	28,31	29,60	28,80	29,0	29,5	33,6	30,85	31,03	32,78	9
	28,55	28,79	29,62	29,2	29,8	31,7	30,19	34,09	33,70	
	28,66	28,82	29,66	29,3	29,8	26,0	30,02	34,02	33,60	
	28,67	28,76	29,39	29,0	29,6	31,8	32,81	30,66	33,68	
	29,21	29,18	28,88	29,2	29,2	26,4	31,58	31,10	33,49	
M [µg/g]	28,66	29,01	29,10	29,12	29,55	29,55	31,11	31,97	33,28	30,15
s [µg/g]	0,298	0,327	0,553	0,133	0,235	3,235	1,022	1,626	0,540	1,597
īs [µg/g]										1,049
S _{rel}	0,010	0,011	0,019	0,005	0,008	0,109	0,033	0,051	0,016	0,053

Abb. 7: ERM[®]-EB102a, Ergebnisse für TI

Lab./Meth.	10/IMS	7/I	9/I	2/I	11/I	3/I	1/A	13/IMS	4/I(R)	Ges.
EW [µg/g]	0,55	1,00	1,06	2,07	5,4	6,82	8,1	< 1	< 2,5	N
	0,60	0,92	1,31	2,07	5,3	6,67	9,3	< 1	< 2,5	7
	0,57	0,97	1,10	1,92	4,8	6,88	9,4	< 1	< 2,5	
	0,60	0,87	0,95	2,10	5,1	7,15	8,4	< 1	< 2,5	
	0,79	0,95	0,78	2,06	5,1	6,82	8,2	< 1	< 2,5	
	0,59	0,91	0,96	2,53	4,8	6,86	9,8	< 1	< 2,5	
M [µg/g]	0,62	0,94	1,03	2,13	5,08	6,87	8,87	< 1	< 2,5	3,65
s [µg/g]	0,086	0,046	0,178	0,208	0,232	0,157	0,720			3,301
īs [µg/g]										0,232
s _{rel}	0,139	0,049	0,173	0,098	0,046	0,023	0,081			0,906

Abb. 8: ERM[®]-EB102a, Ergebnisse für Sb

Lab./Meth.	2/I-NF	4/I(R)	3/I	1/P	10/IMS	11/I	13/IMS	Ges.
EW [µg/g]	0,085	0,556	0,787	2	< 0,1		< 1	Ν
	0,122	0,330	0,779	2	< 0,1		< 1	4
	0,088	0,743	0,795	2	< 0,1		< 1	
	0,150	0,647	0,831	2	< 0,1		< 1	
	0,112	0,840	0,809	2	< 0,1		< 1	
	0,120	0,636	0,841	2	< 0,1		< 1	
M [µg/g]	0,113	0,625	0,807	2,000	< 0,1	< 0,4	< 1	0,886
s [µg/g]	0,024	0,175	0,025	0,000				0,799
īs [µg/g]								0,075
S _{rel}	0,214	0,279	0,031	0,000				0,901

Abb. 9: ERM[®]-EB102a, Ergebnisse für As

Lab./Meth.	2/I-NF	2/I	1/I	3/I	13/IMS	4/I	Ges.
EW [µg/g]	0,139	0,27	1	1,232	< 1	< 3	Ν
	0,141	0,45	1	1,539	< 1	< 3	6
	0,153	0,33	1	1,404	< 1	< 3	
	0,133	0,29	1	1,593	< 1	< 3	
	0,138	0,25	1	1,487	< 1	< 3	
	0,185	0,30	1	1,384	< 1	< 3	
M [µg/g]	0,148	0,315	1,000	1,440	< 1	< 3	0,726
s [µg/g]	0,019	0,071	0,000	0,129			0,602
<u>s</u> [µg/g]							0,055
s _{rel}	0,130	0,227	0,000	0,090			0,830

Abb. 10: ERM[®]-EB102a, Ergebnisse für In

Lab./Meth.	2/I-NF	2/I	3/I	1/I(R)	4/I(R)	13/IMS	10/IMS	Ges.
EW [µg/g]	0,076	0,43	0,447	1,1	< 1,5	< 1	< 1	Ν
	0,084	0,78	0,544	1,0	< 1,5	< 1	< 1	4
	0,076	0,49	0,548	1,0	< 1,5	< 1	< 1	
	0,078	0,31	0,574	1,2	< 1,5	< 1	< 1	
	0,084	0,47	0,410	1,1	< 1,5	< 1	< 1	
	0,086	0,09	0,454	0,9	< 1,5	< 1	< 1	
M [µg/g]	0,081	0,428	0,496	1,050	< 1,5	<1	< 1	0,51
s [µg/g]	0,005	0,227	0,067	0,105				0,401
īs [µg/g]								0,101
S _{rel}	0,056	0,530	0,136	0,100				0,781

Abb. 11: ERM[®]-EB102a, Ergebnisse für Te

Lab./Meth.	7/I	3/I	4/I(R)	9/I	10/IMS	2/I-NF	2/I	8/A	1/A	Ges.
EW [µg/g]	0,458	0,483	0,082	0,66	0,64	0,454	2,64	< 0,5	< 1	N
	0,258	0,578	0,281	0,88	0,58	0,579	1,54	< 0,5	< 1	8
	0,308	0,359	1,400	0,20	0,75	0,519	1,45	< 0,5	< 1	
	0,513	0,181	0,194	0,30	0,60	0,596	1,63	< 0,5	< 1	
	0,342	0,421	0,319	0,46	0,40	0,577	1,61	< 0,5	< 1	
	0,417	0,426	0,441	0,29	0,24	0,572	2,10	< 0,5	< 1	
M [µg/g]	0,3827	0,4080	0,4530	0,4650	0,5335	0,5495	1,8283	< 0,5	< 1	0,4484
s [µg/g]	0,0966	0,1334	0,4794	0,2601	0,1815	0,0536	0,4574			0,0581
īs [µg/g]										0,230
s _{rel}	0,25231	0,32691	1,05840	0,55943	0,34018	0,09748	0,25015			0,12951

Grubbs 99%

Abb. 12: ERM[®]-EB102a, Ergebnisse für Zn

6 Hinweise für den Benutzer

Dieses zertifizierte Referenzmaterial ist gedacht für die Überprüfung der Kalibrierung von optischen Emissions- und Röntgenfluoreszenzspektrometern bei der Analyse von Material ähnlicher Zusammensetzung.

Vor der Analyse ist die Oberfläche durch Abdrehen oder Fräsen zu reinigen.

Bei der Verwendung als Spanmaterial für die nasschemische Analyse ist eine Mindesteinwaage von 0,5 g einzuhalten.

Die Probe ist stabil, solange sie keiner übermäßigen Erhitzung ausgesetzt ist (z.B. bei der Behandlung der Oberfläche oder beim Zerspanen).

7. Literatur

- [1] ISO Guide 31, Reference materials Contents of certificates and labels, 2000
- [2] ISO Guide 34, General requirements for the competence of reference material producers, 2000
- [3] ISO Guide 35, Reference materials General and statistical principles for certification. Third edition, 2006
- [4] Leitfaden für die Entwicklung von BAM-Referenzmaterialien, 2006
- [5] Technical Guidelines for the Production and Acceptance of a European Reference Material (www.erm-crm.org)
- [6] ASTM Designation E 826-90, Standard Practice for Testing Homogenity of Materials for the Development of Reference Materials

8. Information und Probenvertrieb

Information und Probenvertrieb erfolgen durch die

BAM Bundesanstalt für Materialforschung und -prüfung

Fachgruppe I.1: Anorganisch-chemische Analytik, Referenzmaterialien Richard-Willstätter-Straße 11, 12489 Berlin Telefon +49 (0)30 - 8104 2061 oder 1119 Fax: +49 (0)30 - 8104 1117 E-Mail: <u>sales.crm@bam.de</u>

Jede Probe wird zusammen mit einem Zertifikat verschickt, in dem die zertifizierten Gehalte sowie Richtwerte, deren Unsicherheiten, die Mittelwerte der akzeptierten Datensätze, mittlere sowie Laborstandardabweichungen, die verwendeten analytischen Verfahren und die an der Zertifizierung beteiligten Laboratorien angegeben sind.

Auskünfte und Beratung zu zertifizierten Referenzmaterialien können unter (030) 8104 1111 eingeholt werden.

9. Anhang

Unsicherheitsberechnung für ERM[®]-EB102a 1) Berechnung des radialen Inhomogenitätsbeitrags zur Gesamtunsicherheit

						ZRM "E	RM-EB102a	PbCaS	ŝn							
	Erachaio					l	Unsicherheitsbe	eiträge	•					Unsi	Unsicherheit	
	Ergebnis	Homogenität Ringversuch						radial								
Element	М	Einheit	S _{Verfahren}	S _{radial}	s _{radial} rel.%	S _{radial} = S _{Verfahren}	100*(s _{radial} - s _{Verfahren})/M	р	U _{bb}	u _{bb} rel.%	S _{Ring}	100*(s _{Ring} /M)	n	S _{radial,eff}	s _{radial,eff} rel. %	
Sn	1,0100	%	0,01170	0,02340	2,32	0,01170	1,16	12	0,002205	0,22	0,04000	4,0	12	0,02026	2,01	
Ca	635,0000	µg/g	8,30500	8,81000	1,39	0,50500	0,08	12	1,565519	0,25	30,00000	4,7	11	2,93991	0,46	
Bi	74,0000	µg/g	0,29600	0,62000	0,84	0,32400	0,44	12	0,055797	0,08	4,00000	5,4	12	0,54478	0,74	
Ag	170,00	µg/g	0,050	2,05000	1,21	2,00000	1,18	12	0,009425	0,01	4,00000	2,4	12	2,04939	1,21	
Cu	1,30	µg/g	0,038	0,008	0,59	-0,03030	-2,33	12	0,0072	0,55	0,50000	38,5	14	0,00716	0,55	
TI	30,20	µg/g			0,00	0,00000	0,00	12	0,0000	0,00	1,60000	5,3	9		0,00	
Sb	4,00	µg/g	2,590	3,201	80,03	0,61100	15,28	12	0,4882	12,206	0,21200	5,3	7	1,88104	47,03	
Zn	< 0,5	µg/g														
AI	124,00	µg/g	1,290	0,573	0,5	-0,71700	-0,58	13	0,2286	0,18	7,00000	5,6	13	0,22860	0,18	
Те	< 1,5	µg/g														
As	< 2	µg/g						12								

						ZRM "E	RM-EB102a	PbCaS	'n							
	Franknia						Unsicherheitsbe	eiträge	1					Unsid	cherheit	
	Ergebnis					Homogeni	tät				Ri	Ringversuch axial				
Element	Μ	Einheit	S _{Verfahren}	S _{axial}	s _{axial} rel.%	S _{axial} −S _{Verfahren}	100*(s _{axial} - s _{Verfahren})/M	р	u _{bb}	u _{bb} rel.%	S _{Ring}	100*(s _{Ring} /M)	n	S _{axial,eff}	s _{axial,eff} rel. %	
Sn	1,01	%	0,01170	0,01230	1,22	0,00060	0,06	12	0,002205	0,22	0,04000	4,0	12	0,00379	0,38	
Ca	635,00	µg/g	8,30500	9,72000	1,53	1,41500	0,22	12	1,565519	0,25	30,00000	4,7	11	5,05028	0,80	
Bi	74,00	µg/g	0,29600	0,31200	0,42	0,01600	0,02	12	0,055797	0,08	4,00000	5,4	12	0,09863	0,13	
Ag	170,0	µg/g	0,050	1,660	0,98	1,61000	0,95	12	0,0094	0,01	4,00000	2,4	12	1,65925	0,98	
Cu	1,30	µg/g	0,038	0,139	10,69	0,10100	7,77	12	0,0072	0,55	0,50000	38,5	14	0,13370	10,28	
TI	30,20	µg/g			0,00	0,00000	0,00	12	0,0000	0,000	1,60000	5,3	9	0,00000	0,00	
Sb	4,00	µg/g	2,590	2,890	72,3	0,30000	7,50	12	0,4882	12,21	0,21200	5,3	7	1,28219	32,05	
Zn	< 0,5	µg/g						12								
AI	124,0	µg/g	1,290	4,860	3,9	3,57000	2,88	12	0,2432	0,20	7,00000	5,6	13	4,68567	3,78	
Те	< 1,5	µg/g						12								
As	< 2	µg/g						12								

2) Berechnung des axialen Inhomogenitätsbeitrags zur Gesamtunsicherheit

3) Berechnung der Gesamtunsicherheit

	ZRM "E	ERM-EB1	02a" Pb	CaSn						
	F ranchasia						Unsicl	nerheit		
	Ergebnis		R	lingversuch			RV + rad	ial + axial		
Element	Μ	Einheit	S _{Ring}	100*(s _{Ring} /M)	n	S _{axial,eff}	U _{gesamt}	u _{Gesamt} rel. %	S _{radial,eff}	U
Sn	1,0100	%	0,040	4,0	12	0,00379	0,0236	2,3	0,02026	0,04726
Ca	635,0000	µg/g	30,000	4,7	11	5,0503	10,7688	1,7	2,93991	21,53756
Bi	74,0000	µg/g	4,000	5,4	12	0,0986	1,2806	1,7	0,54478	2,56113
Ag	170,00	µg/g	4,000	2,4	12	1,6592	2,8786	1,7	2,04939	5,75723
Cu	1,30	µg/g	0,500	38,5	14	0,1337	0,1892	14,6	0,00716	0,37834
TI	30,20	µg/g	1,600	5,3	9	0,0000	0,5333	1,8		1,5*
Sb	4,00	µg/g	0,212	5,3	7	1,2822	2,2779	56,9	1,88104	4,55575
Zn	< 0,5	µg/g								
AI	124,00	µg/g	7,000	5,6	13	4,6857	5,0771	4,1	0,22860	10,15421
Те	< 1,5	µg/g								
As	< 2	µg/g								

* Wert abgeschätzt.