

CERTIFICATE

CERTIFIED REFERENCE MATERIAL BAM-M113

Lead alloy PbCaSn

Element	Mass fraction ¹⁾	Uncertainty ²⁾			
	in %	in %			
Ca	0.124	0.005			
Sn	1.047	0.019			
Bi	0.0194	0.0008			
AI	0.0145	0.0009			
	in mg/kg	in mg/kg			
Ag	64.7	1.5			
Си	18.9	0.8			
Fe ³⁾	1.0	0.5			
Sb	5.4	1.0			

Certified Value(s)

- ¹⁾ Unweighted mean value of the means of accepted sets of data (consisting of at least 3 single results), each set being obtained by a different laboratory and/or a different method of measurement.
- ²⁾ Estimated expanded uncertainty *U* with a coverage factor of k = 2, corresponding to a level of confidence of approx. 95 %, as defined in the Guide to the Expression of Uncertainty in Measurement, (GUM, ISO/IEC Guide 98-3:2008).
- ³⁾ The mean value is estimated using the marginal likelihood for the mean (see report)

Element	Mass fraction (limits) ⁴⁾ in mg/kg	⁴⁾ Uncertainty ⁵⁾ (error probability)				
As	< 1	0.05				
Cr	< 0.5	0.05				
Mn	< 0.5	0.05				
Se	< 1	0.05				

- ⁴⁾ The upper limit is estimated by calculating the 95% quantile of the marginal likelihood distribution (see report)
- ⁵⁾ The uncertainty refers to the probability of errors or in other words the significance level. A commonly used significance level is 0.05, which means that the probability for an error (i.e., the true value is outside of the given range) is 5%,

End of Validity

This certificate is valid until there is a revocation from the producer of the material.

Material Description

The Reference Material is available in the form of discs (approx. 38 mm diameter and 38 mm height).

Recommended Use

The CRM is intended for establishing or checking the calibration of spark optical emission spectrometers for the analysis of samples of similar matrix composition. The minimum sample size for wet chemical analysis is 0.2 g.

Handling

Before use, the surface of the material must be prepared by milling or turning on a lathe. For wet chemical analysis chips must be prepared by turning or milling of the sample surface.

Transport and Storage

The material should be stored in a dry and clean environment at room temperature. Transport can be done under normal ambient conditions.

Metrological Traceability

To ensure traceability of the certified mass fractions to the SI (Système International d'Unités) calibration was performed using standard solutions prepared from pure metals or stoichiometric compounds or with traceable commercial calibration solutions.

Mass fraction in ma/ka

Means of Accepted Data Sets

Certified values Mass fraction in %

Line No.	Ca	Sn	Bi	AI	Ag	Cu	Fe	Sb	As	Cr	Mn	Se
1			0.0173	0.0119	60.0	17.0			< 0.18	< 0.1	0.02	< 0.3
2	0.1187		0.0180	0.0130	62.8	17.2	0.39		< 0.2	< 0.1	0.02	< 0.44
З	0.1195	1.020	0.0187	0.0142	63.3	17.4	0.52	4.0	< 0.32	0.15	< 0.1	< 0.5
4	0.1202	1.021	0.0191	0.0143	64.1	17.7	0.67	4.6	< 0.5	0.22	0.1	< 0.7
5	0.1212	1.023	0.0197	0.0145	64.2	18.8	0.83	5.4	< 1	0.22	0.11	0.94
6	0.1222	1.042	0.0200	0.0146	64.4	19.2	< 1	5.5		< 0.5	< 0.5	< 1
7	0.1229	1.042	0.0201	0.0147	65.1	19.5	< 1	5.8	< 2	< 1	< 1	< 2
8	0.1229	1.043	0.0202	0.0148	65.4	19.5	1.43	7.4		< 1	< 1	
9	0.1253	1.045	0.0206	0.0149	66.6	19.6	1.50					
10	0.1277	1.045	0.0209	0.0150	66.8	19.9	1.63					
11	0.1277	1.073		0.0162	68.9	20.3	1.89					
12	0.1320	1.079		0.0162		21.2						
13	0.1322	1.087										
М	0.1243	1.047	0.0194	0.0145	64.7	18.9	0.97*	5.4	< 1**	< 0.5**	< 0.5**	< 1**
S _M	0.0046	0.024	0.0012	0.0012	2.4	1.4	0.79*	1.2				
\overline{S}_{i}	0.0025	0.019	0.0004	0.0008	1.1	0.6	0.2	0.6				

The laboratory mean values have been examined statistically to eliminate outlying values. Where a "---" appears in the table it indicates that an outlying value has been omitted. A data set consists of at least 3 but usually 6 single values of one laboratory.

* calculated from quantitative and censored values following a Bayesian approach (see report)

** estimated by calculating the 95% quantile of the marginal likelihood distribution (see report)

Analytical Methods

Element	Line Number	Method
Ca	2, 4, 5, 6, 8, 9, 10, 11 3 7 12 13	ICP-OES, dissolution with tartaric acid/HNO ₃ ICP-OES, dissolution with HNO ₃ /HF/HCI FAAS, dissolution with HNO ₃ , separation of SnO ₂ and Pb(NO ₃) ₂ ICP-OES, dissolution with HNO ₃ and traces of tartaric acid ICP-OES, dissolution with HNO ₃ /fluoroboric acid
Sn	3, 4, 6, 8, 9, 11, 12 5 7 10 13	ICP-OES, dissolution with tartaric acid/HNO ₃ ICP-OES, dissolution with HNO ₃ and traces of tartaric acid ICP-OES, dissolution with HNO ₃ /HF/HCI Gravimetry as SnO ₂ , dissolution with HNO ₃ ICP-OES, dissolution with HNO ₃ /fluoroboric acid
Bi	1, 2, 4, 5, 8, 9, 10 3 6 7	ICP-OES, dissolution with tartaric acid/HNO ₃ ICP-OES, dissolution with HNO ₃ and traces of tartaric acid ICP-OES, dissolution with HNO ₃ /HF/HCI ICP-OES, dissolution with HNO ₃ /fluoroboric acid
AI	1, 2, 3, 4, 6, 7, 9, 10, 11 5 8 12	ICP-OES, dissolution with tartaric acid/HNO ₃ ICP-OES, dissolution with HNO ₃ /HF/HCI ICP-OES, dissolution with HNO ₃ and traces of tartaric acid ICP-OES, dissolution with HNO ₃ /fluoroboric acid
Ag	1, 2, 3, 4, 7, 8, 9, 10, 11 5 6	ICP-OES, dissolution with tartaric acid/HNO ₃ ICP-OES, dissolution with HNO ₃ /HF/HCI FAAS, dissolution with HNO ₃ , separation of SnO ₂ and Pb(NO ₃) ₂
Cu	1, 3, 4, 5, 6, 7, 8, 9, 11 2 10 12	ICP-OES, dissolution with tartaric $acid/HNO_3$ FAAS, dissolution with HNO_3 , separation of SnO_2 and $Pb(NO_3)_2$ ICP-OES, dissolution with $HNO_3/HF/HCI$ ICP-OES, dissolution with HNO_3 and traces of tartaric acid
Fe	2, 4, 5, 7, 8, 10, 11 3 6 9	ICP-OES, dissolution with tartaric acid/HNO ₃ Spectrophotometry, dissolution with HNO ₃ , separation of SnO ₂ ICP-MS, dissolution with HNO ₃ /HF/HCI ICP-OES, dissolution with HNO ₃ and traces of tartaric acid
Sb	3 4, 5, 6, 8 7	ICP-MS, dissolution with HNO₃/HF/HCl ICP-OES, dissolution with tartaric acid/HNO₃ ICP-OES, dissolution with HNO₃ and traces of tartaric acid
As	1, 3, 4, 7 2 5	ICP-OES, dissolution with tartaric acid/HNO3 ICP-MS, dissolution with HNO3/HF/HCI ICP-OES, dissolution with HNO3 and traces of tartaric acid
Cr	1, 3, 4, 5, 6, 8 2 7	ICP-OES, dissolution with tartaric acid/HNO3 ICP-MS, dissolution with HNO3/HF/HCI ICP-OES, dissolution with HNO3 and traces of tartaric acid
Mn	1, 2, 3, 4, 6, 8 5 7	ICP-OES, dissolution with tartaric acid/HNO ₃ ICP-MS, dissolution with HNO ₃ /HF/HCI ICP-OES, dissolution with HNO ₃ and traces of tartaric acid
Se	1 2, 3, 4, 5, 6, 7	ICP-MS, dissolution with HNO ₃ /HF/HCl ICP-OES, dissolution with tartaric acid/HNO ₃

Abbreviations:

FAAS – Flame atomic absorption spectrometry ICP-OES – Inductively coupled plasma - optical emission spectrometry ICP-MS – Inductively coupled plasma - mass spectrometry

Participating Laboratories

Aurubis AG, Hamburg, Germany BAE Batterien GmbH, Berlin, Germany Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany Nyrstar Stolberg, Stolberg, Germany Clarios Germany GmbH & Co. KGaA, Hannover, Germany Clarios, BTC Labs, Glendale WI, United States Clarios Mexico, Monterrey Mexico Clarios Zwickau GmbH & Co. KG, Zwickau, Germany Ecobat Resources Freiberg GmbH, Freiberg, Germany Hoppecke Batterien GmbH & Co. KG, Brilon-Hoppecke, Germany Raghavendra Spectro Metallurgical Laboratory, Bangalore, India TU Clausthal, Clausthal-Zellerfeld, Germany

Literature

A detailed technical report describing the analysis procedures and the treatment of the analytical data used to certify BAM-M113 is available on request or can be downloaded from BAM website (https://rrr.bam.de).

Accepted as a BAM-CRM on June, 27, 2024

Bundesanstalt für Materialforschung und -prüfung (BAM)

Dr. S. Richter Committee for Certification Dr. S. Recknagel Project Coordinator

BAM holds an accreditation as a reference material producer according to ISO 17034. This accreditation is valid only for the scope as specified in the certificate D-RM-11075-01-00.

DAkkS is a signatory of the multilateral agreement (MLA) between EA, ILAC and IAF for mutual acceptance.

This Certified Reference Material is offered by:

Bundesanstalt für Materialforschung und –prüfung (BAM) Richard-Willstätter-Str. 11, D-12489 Berlin, Germany

P: +49 30 8104 2061

F: +49 30 8104 72061

E-Mail: sales.crm@bam.de Internet: www.webshop.bam.de