

CERTIFICATE OF ANALYSIS ERM[®]-EB602

ZnAl4Cu1					
	Certified value 1)	Uncertainty 2)			
Element	Mass fraction in %				
AI	4.08	0.11			
Cu	0.812	0.017			
Mg	0.0415	0.0020			
	Mass fraction in mg/kg				
Pb	19.5	3.0			
Cd	1.1	0.5			
Fe	7.3	1.6			
Sn	1.0	0.5			
Ni	2.5	0.4			
Si	11.4	1.9			
Ti	4.8	0.4			

¹⁾ Unweighted mean value of the means of accepted sets of data (consisting of at least 4 but usually 6 single results), each set being obtained in a different laboratory and/or a different method of measurement. The values are traceable to the SI (Système International d'Unités) via calibration using sufficiently pure metals or substances of known stoichiometry or well characterised monoelement solutions.

²⁾ Estimated expanded uncertainty U with a coverage factor of k = 2 (Fe: k = 3), corresponding to a level of confidence of approximately 95 %, as defined in the Guide to the expression of uncertainty in measurement (GUM), ISO/IEC Guide 98-3:2008.

Accepted as an ERM[®], Berlin, 2014-09-11.

BAM Department 1 Analytical Chemistry; Reference Materials BAM Division 1.6 Inorganic Reference Materials

Prof. Dr. U. Panne (Head of Department) Dr. S. Recknagel (Head of Division)

NOTE

European Reference Material ERM[®]-EB602 was produced and certified under the responsibility of BAM Federal Institute for Materials Research and Testing in cooperation with the Committee of Chemists of the GDMB, Gesellschaft der Metallurgen und Bergleute e.V. according to the principles laid down in the technical guidelines of the European Reference Materials[®] co-operation agreement between BAM-LGC-IRMM. Information on these guidelines is available on the Internet (http://www.erm-crm.org).

INTENDED USE

The CRM is intended for establishing or checking the calibration of optical emission and X-ray spectrometers for the analysis of samples of similar composition. The minimum sample size for wet chemical analysis is 0.5 g.

INSTRUCTIONS FOR USE

Before use, the surface of the material must be prepared by milling or turning on a lathe. For wet chemical analysis chips have to be prepared by turning or milling of the sample surface.

DESCRIPTION OF THE SAMPLE

The Reference Material is available in the form of discs (39 mm diameter and 39 mm height).

STORAGE

The material should be stored in a dry and clean environment at room temperature (approximately 20 °C).

TECHNICAL REPORT

A detailed technical report describing the analysis procedures and the treatment of the analytical data used to certify ERM[®]-EB602 is available on request or can be downloaded from BAM website (www.bam.de/en/fachthemen/referenzmaterialien/index.htm).

MEANS OF ACCEPTED DATA SETS (FOR ONE METHOD AT ONE LABORATORY, **RESPECTIVELY**)

Mass fract	ion in %			Ma	ass fract	ion in m	g/kg				
Line no.	AI	Cu	Mg		Pb	Cd	Fe*	Sn	Ni	Si	Ti
1	3.987		0.0390		15.67		7.13	0.517	1.57	8.17	4.52
2	4.030	0.797	0.0391		16.96	0.93	7.18	0.733	2.00	10.12	4.65
3	4.057	0.799	0.0394		17.22	1.00	7.28	1.000	2.38	10.48	4.73
4	4.061	0.804	0.0405		18.80	1.03	7.50	1.050	2.52	10.83	4.78
5	4.065	0.805	0.0411		19.02	1.03	7.58	1.388	2.58	11.18	4.87
6	4.070	0.806	0.0411		19.17	1.06		1.450	2.58	13.64	4.92
7	4.072	0.808	0.0413		20.83	1.08		< 5	2.95	15.00	5.00
8	4.084	0.809	0.0416		20.88	1.13		< 5	2.97		5.02
9	4.087	0.809	0.0418		22.75	1.17		< 5	3.05		
10	4.092	0.812	0.0428		23.33	< 2					
11	4.094	0.829	0.0429			< 5					
12	4.168	0.831	0.0445						< 5		
13	4.202	0.832	0.0448								
М	4.082	0.812	0.0415		19.46	1.06	7.34	1.03	2.51	11.35	4.81
S _M	0.054	0.012	0.0019		2.50	0.08	0.21	0.37	0.49	2.28	0.18
\overline{S}_{i}	0.041	0.007	0.0005		1.11	0.10	0.23	0.24	0.14	2.33	0.34

The laboratory mean values have been examined statistically to eliminate outlying values. Where a " --- " appears in the table it indicates that an outlying value has been omitted (Grubbs 95 %). A data set consists of at least 4 but usually 6 single values of one laboratory.

M: mean of means of data sets

s_M: standard deviation of mean of means of data sets

 \overline{s}_i : square root of mean of variances of data sets under repeatability conditions

Note: "< - values" were not included into the calculation of M and s_M

*One of the methods used for Fe-determination was the primary method IDMS. Therefore results which were not consistent with the IDMS results remained unconsidered for certification (see report for details).

PARTICIPANTS

Certified values

Allgemeine Gold- und Silberscheideanstalt, Pforzheim, Germany AMCO united, Duisburg, Germany Asturiana de Zinc, S.A., Avilés-Asturias, Spain BAM Bundesanstalt für Materialforschung und -prüfung, Berlin, Germany Boliden Odda AS, Odda, Norway Boliden Kokkola AS, Kokkola, Finland CHEMAD GmbH, Duisburg, Germany GfE Fremat GmbH, Freiberg, Germany Grillo-Werke AG, Goslar, Germany ThyssenKrupp Steel AG, Duisburg, Germany Umicore AG & Co KG., Hanau, Germany Weser-Metall GmbH, Nordenham, Germany

ANALYTICAL METHOD USED FOR CERTIFICATION

Element	Line no.	Method
AI	1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13 2, 4	ICP-OES Titration
Cu	2, 6, 7, 8, 9, 10, 11, 12, 13 3, 4, 5	ICP-OES FAAS
Mg	1, 2, 3, 4, 5, 6, 8, 10, 12, 13 7, 9, 11	ICP-OES FAAS
Pb	1, 9, 10 2, 3, 4, 5, 6, 7 8	FAAS ICP-OES ICP-MS
Cd	2, 4, 7, 9, 10, 11 3, 5, 8 6	ICP-OES FAAS ETAAS
Fe	1 2, 3, 4, 5	IDMS ICP-OES
Sn	1, 2, 3, 4, 6, 7, 8, 9 5	ICP-OES ICP-MS
Ni	1, 2, 3, 4, 5, 7, 8, 9, 12 6	ICP-OES ETAAS
Si	1, 2, 3, 4, 5, 6 7	ICP-OES Spectrophotometry
Ti	1, 2, 3, 5, 6, 7, 8 4	ICP-OES ICP-MS

Abbreviations: ETAAS – Electrothermal atomic absorption spectrometry FAAS – Flame atomic absorption spectrometry ICP-OES – Atomic emission spectrometry with inductively coupled plasma ICP-MS – Mass spectrometry with inductively coupled plasma IDMS – Isotope dilution mass spectrometry

This certificate is valid until 09/2064.

Supply of this Reference Material by: BAM Federal Institute for Materials Research and Testing

Richard-Willstätter-Str. 11, 12489 Berlin, Germany

Phone: +49 30 8104 2061 Fax: +49 30 8104 1117 e-mail: <u>sales.crm@bam.de</u> internet: <u>www.bam.de</u>