

Bericht

zur Entwicklung des mikroporösen Referenzmaterials

BAM-P107

für die Methode Gasadsorption (Stickstoff)

nach den "Guidelines for the production and certification of BAM reference materials" (in Übereinstimmung mit dem EC-Dokument BCR/01/97)

Bundesanstalt für Materialforschung und -prüfung (BAM)

Projekt:

0103-I-0016 "Zertifizierung von porösen Referenzmaterialien"

Projektleiter:	Peter Klobes, BAM, I.13
Bearbeiter:	Peter Lorenz, BAM, I.13
Statistik:	Thomas Fritz, BAM, S.21
Auswertesoftware:	Peter Klobes, BAM, I.13
Eignungstest:	Barbara Röhl-Kuhn, BAM, I.13

Adsorptionsexperimente und Probenteilung:

Waltraud Ebert, BAM, I.13 Annett Zimathies, BAM, I.13

Datum: 19. April 2000 (rev. 26. Oktober 2000)

Die Teilnehmer am Zertifizierungsringversuch haben Adsorptionsisothermen von Stickstoff bei der Temperatur des flüssigen Stickstoffs (77 K) an einem mikroporösen Zeolith vom Faujasitetyp gemessen.

Folgende Kenngrößen wurden bestimmt:

- Porenweite (median) nach dem Modell von Saito und Foley (zylindrische Porengeometrie)
- spezifisches Mikroporenvolumen
- spezifische Oberfläche nach dem Langmuir-Modell und He-Dichte (informative Werte)

Inhaltsverzeichnis	Seite
0. Einleitung	3
1. Beschreibung des verwendeten Materials	4
Hersteller Thermogravimetrische Untersuchungen Benutzerhinweise Weitere Charakterisierung des Materials	
2. Untersuchungsmethoden	7
Isothermen Kenngrößen Spezifische Oberfläche nach dem Langmuir-Modell Porenweite (median) nach dem Saito-Foley-Modell Spezifisches Mikroporenvolumen	
3. Probenteilung und Verpackung	12
4. Bestimmung der zertifizierten Größen und deren Genauigkeit	13
5. Eignungstest	16
Material Methode Rechenprogramm zur Berechnung der Monoschichtkapazität von mikroporösen Substanzen Bestimmung des Referenzwertes der Substanz B Ergebnisse des Eignungstests für die Teilnehmer am Zertifizierungsringvers 6. Untersuchung von Homogenität und Stabilität	uch 23
Vergleich von zwei Proben Vergleich von zwei Mittelwerten mit dem einseitigen t-Test Vergleich von zwei Varianzen mit dem einseitigen F-Test Homogenitätstest Referenzsubstanz Datensätze Homogenitätstest Stabilitätstest Schlussfolgerungen	
 Zertifizierungsringversuch: Adsorption von Stickstoff am Faujasite type zeolite bei der Temperatur des flüssigen Stickstoffs (77 K) 	29
Teilnehmer Geräte Adsorptionssystem / Kenngrößen / Auswerteverfahren Ausgewertete Kenngrößen Konstanten und Parameter für die Auswertung	
8. Ergebnisse (Gesamtergebnis / zertifizierte Werte)	34
9. Literatur	37
Anhang (Einzelergebnisse der Laboratorien)	39

0. Einleitung

Ungeachtet einer Vielzahl von Veröffentlichungen auf dem Gebiet von mikroporösen Stoffen existieren gegenwärtig für ihre Charakterisierung mit der Gasadsorption weder zertifizierte Referenzmaterialien, noch sind verbindliche Standards verfügbar. Gerätehersteller beziehen sich auf interne Standards, die nicht objektiv sind. Ebenso verfahren die Prüflaboratorien in den produkterzeugenden und -verarbeitenden Betrieben im Rahmen ihres Qualitätsmanagements, indem sie "hauseigene" Standards verwenden. Dadurch wird eine objektive Vergleichbarkeit der Ergebnisse problematisch. Hinzu kommt, dass unterschiedliche Gerätehersteller unterschiedliche Auswertemethoden, -modelle und Darstellungen der Porenvolumenverteilung wählen, wodurch eine Vergleichbarkeit ebenfalls erschwert wird.

Ziel ist - unter Anwendung der "Guidelines for the production and certification of BAM reference materials" - die Bereitstellung eines zertifizierten Referenzmaterials für Mikroporen für die Methode der Gasadsorption unter Verwendung von Stickstoff bei der Temperatur des flüssigen Stickstoffs (77 K)¹. Insbesondere sollen die Kenngrößen spezifische Oberfläche, spezifisches Mikroporenvolumen sowie die Porenweite zertifiziert werden.

- Dieses zertifizierte Referenzmaterial dient allen Nutzern und Herstellern von Geräten zur Porenbestimmung zur Kalibrierung sowie für Produkthersteller zum Qualitätsmanagement.
- Es dient der Beurteilung der Richtigkeit und Sicherheit von Analysen- und Pr
 üfverfahren.
- Es ist ein Beitrag zur pr\u00e4normativen Forschung und Entwicklung, sowie zur nationale und internationale Normungst\u00e4tigkeit.

Die Ergebnisse werden sowohl von Geräteherstellern als auch von Industrie zur Qualitätssicherung benötigt: z. B. Keramikindustrie, Pigmentindustrie, Baustoffindustrie, pharmazeutische Industrie, chemische Industrie (Adsorbenzien, chromatographische Trennmaterialien, Katalysatoren), Umwelttechnik, regenerative Energietechnik.

Qualitätsstandards und zertifizierten Referenzmaterialien können nach unserer Erfahrung nicht von der Privatwirtschaft erarbeitet bzw. bereitgestellt werden. Dies ist ein typisches Aufgabengebiet der Bundesanstalt für Materialforschung und -prüfung. Die BAM ist berechtigt, Referenzsubstanzen zu zertifizieren.

Dieses Material soll in die internationale Datenbank für zertifizierte Referenzmaterialien COMAR (Code of Reference Materials) aufgenommen werden.

¹ Da Adsorptionsmessungen an mikroporösen Stoffen bei Verwendung von Argon bei der Temperatur des flüssigen Argons (87 K) wegen der Lage der Isotherme einfacher durchzuführen sind, wurden einige Experimente - insbesondere der Homogenitätstest und Stabilitätstest - nicht mit Stickstoff, sondern mit Argon ausgeführt. Allerdings wird in der praktischen Arbeit Stickstoff als Messgas wegen seines geringeren Preises und der einfachen Beschaffbarkeit bevorzugt.

1. Beschreibung des verwendeten Materials

Das Kandidatenmaterial für die Entwicklung eines mikroporösen /SING/ Referenzmaterials für die Gasadsorption (Stickstoff bei der Temperatur des flüssigen Stickstoffs (77 K)) ist nach Herstellerangaben ein Zeolith /MEIER/ vom Faujasitetyp. Es besteht aus Pellets mit einem Binderanteil (Ton) von 1 - 2 %. und wird im folgenden stets als *Faujasite type zeolite* bezeichnet.

Hersteller

Merck KGaA, Frankfurter Straße 250, 64271 Darmstadt, Deutschland

Thermogravimetrische Untersuchungen

Abb. 1: Thermogravimetrische Charakterisierung des Faujasite type zeolites (durchgeführt von Dietrich Schultze, BAM, I.33): Masseverlust in Abhängigkeit von der Temperatur, normiert auf den Glührückstand. Bei 350 °C (653 K) ist er weitgehend entwässert. Diese Temperatur wird als Ausheiztemperatur festgelegt

Benutzerhinweise

Als Probeneinwaage werden etwa 0,2 g empfohlen. Sie kann variieren und hängt von der verwendeten Messapparatur ab (Einwaageoptimierung).

Das Material soll bei Raumtemperatur (20 - 25 °C) gelagert werden.

Vor seiner Verwendung (Beginn der Adsorptionsmessung) muss der Faujasite type zeolite entgast werden. Da ein zu schnelles Ausheizen zu irreversiblen Schäden am Faujasite type zeolite führen kann, ist folgende Prozedur einzuhalten:

Beginnend bei Raumtemperatur wird der Faujasite type zeolites zunächst bis etwa 350 K ($\approx 80 \,^{\circ}$ C) im Vakuum geheizt. Wenn ein Restdruck von 10⁻² Pa (oder geringer) bei 350 K ($\approx 80 \,^{\circ}$ C) erreicht ist, wird die Temperatur vorsichtig (etwa 1 Kelvin pro Minute) bis zu 390 K ($\approx 120 \,^{\circ}$ C) erhöht. In diesem Bereich wird der Hauptanteil des adsorbierten Wassers abgegeben. Wenn ein Restdruck von 10⁻² Pa (oder geringer) erreicht ist, wird weiter im Vakuum geheizt, wobei die Temperatur in Schritten von 50 K pro 30 Minuten erhöht wird, bis 620 K ($\approx 350 \,^{\circ}$ C) erreicht ist, wird weiter mindestens 5 Stunden bei 620 K ($\approx 350 \,^{\circ}$ C) evakuiert.

Um die Messapparatur nicht mit Wasserdampf zu verunreinigen, empfiehlt es sich, die Probe separat auszuheizen. Da die Probe aber nach erfolgter Entgasung beim Umsetzen an den Analysenport der Messapparatur in der Regel wieder belüftet wird, ist ein erneutes kurzzeitiges Ausheizen bei 620 K erforderlich.

Vorsicht: Zur Bestimmung des Volumens der Messapparatur (dead space / free space) wird Helium verwendet. Der Faujasite type zeolite darf erst nach Beendigung der Messungen mit Helium in Kontakt gebracht werden, da Helium in Mikroporen durch die oben beschriebene Ausheizprozedur nicht vollständig entfernt wird. Dies führt zur Verfälschung der Adsorptionsisotherme von Stickstoff. Free-Space-Messungen also erst nach Abschluss der Adsorptionsmessungen durchführen!

Abb. 2: Ausheizkurve (Temperatur-Zeit-Abhängigkeit) für den Faujasite type zeolite

Weitere Charakterisierung des Faujasite type zeolites

Dichte

Die Dichte wurde bestimmt mit der Heliumpyknometrie bei Raumtemperatur (296 K = 23 °C) nach Trocknung bei 393 K (= 120 °C) über 24 Stunden: Dichte = 2,34 g/cm³

Diese "scheinbare" Dichte ("apparent" density) ist die Dichte des Materials einschließlich der geschlossenen und unzugänglichen Poren /ROUQUÉROL, S. 1741/.

Gas: Helium, trocken, Reinheit mindestens 99,99 %

Chemische Analyse: Si/Al-Verhältnis

Bestimmung des Si/Al-Verhältnisses, ermittelt mit der ²⁹Si MAS NMR Spektroskopie von Werner Storek, BAM, I.31:

Si/Al = 1,6

Si/Al-Verhältnis nach der Literatur /FYFE, S. 263/: Zeolith, X-Typ: $1,0 \le Si/Al \le 1,5$ Zeolith, Y-Typ: Si/Al > 1,5

Zusammensetzung der Elementarzelle des Faujasites nach der Literatur /MEIER, S. 104/: (Na₂,Ca,Mg)₂₉[Al₅₈Si₁₃₄O₃₈₄] x 240 H₂O

Geometrie der Poren / Kanäle nach der Literatur /MEIER, S. 104/

Der kristallographisch freie Durchmesser der Kanäle folgt aus den Atomkoordinaten des Materials und dem Sauerstoffradius von 0,135 nm.

Faujasite type zeolite: freier Durchmesser = 0,74 nm Die Form der Poren / Kanäle des Faujasite type zeolites werden im Auswertemodell durch eine Zylinderporengeometrie angenähert.

2. Untersuchungsmethoden

Zur Untersuchung der spezifischen Oberfläche, der Porenweite und des spezifischen Mikroporenvolumens wurde die Methode der Gasadsorption eingesetzt. Als Sorptiv wurde Stickstoff (trocken) mit einer Reinheit von mindestens 99,99 % und als Badflüssigkeit flüssiger Stickstoff (77 K) mit einer Reinheit von mindestens 99 % verwendet.

Es ist noch keine Standardmessmethode für die Gasadsorption in Mikroporen verfügbar. Eine DIN-Norm ist in Arbeit: DIN 66135 "Mikroporenanalyse mittels Gasadsorption"

Abb. 3: Adsorptionsisotherme von Stickstoff bei der Temperatur des flüssigen Stickstoffs (77 K) am Faujasite type zeolite.

Es ist das adsorbierte Gasvolumen (Stickstoff) in Abhängigkeit vom relativen Druck, d. h. bezogen auf den Druck beim Siedepunkt des Adsorptivs (flüssiger Stickstoff / 77 K), im linearen Maßstab für den relativen Druck dargestellt. Es liegt eine Isothermenform vom Typ I vor (Klassifikation nach /SING, S. 612/). Diese Form ist typisch für mikroporöse Stoffe.

Abb. 4: Adsorptionsisotherme von Stickstoff bei der Temperatur des flüssigen Stickstoffs (77 K) am Faujasite type zeolite bei logarithmischer Darstellung des relativen Drucks p/p₀.

Es ist der Bereich der Mikroporen (Porenweite < 2 nm /SING, S. 606/) bei Anwendung von verschiedenen Parametersätzen im Saito-Foley-Modell (Zylinderporengeometrie) eingezeichnet (siehe Tabelle 1). Kenngrößen, die aus den Isothermen erhalten werden:

Spezifische Oberfläche nach dem Langmuir-Modell

(siehe auch Beschreibung des Rechenprogramms "langmuir.m" zur Berechnung der Monoschichtkapazität von mikroporösen Stoffen)

Die spezifische Oberfläche nach dem Langmuir-Modell hängt sowohl von der Auswahl der experimentellen Punkte, als auch von der verwendeten Kurvenanpassung ab.

 Abb. 6: Adsorptionssystem Faujasite type zeolite / Stickstoff bei der Temperatur des flüssigen Stickstoffs (77 K):
 Die Langmuirdarstellung bei Verwendung verschiedener Grenzen für die Auswahl der einbezogenen Messdaten

Unter Einbeziehung aller Punkte bis zu $p/p_0 = 0,015$, d. h. letzter Punkt bei $p/p_0 = 0,0129$: spezifische Oberfläche = 612,1 m² g⁻¹

Unter Einbeziehung aller Punkte bis zu p/p_0 [min $|p/p_0(x_j) - 0.015|$],

d. h. letzter Punkt bei $p/p_0 = 0,0162$:

spezifische Oberfläche = 615,4 m² g⁻¹

Porenweite (median) nach dem Saito-Foley-Modell (Zylinderporengeometrie)

(siehe in: MICROMERITICS, ASAP 2010, Accelerated Surface Area and Porosimetry System, Operator's Manual, V3.00, September 1996, Appendix C, S. C-25)

Porenweite (median) - Zeolith-Parameter (nach Ross/Olivier):	0,85 nm
Porenweite (median) - Aluminosilicate-Parameter:	0,57 nm
Porenweite (median) - Zeolith-Parameter (nach de la Puente):	0,70 nm

Abb. 5: Porenvolumenverteilung - berechnet unter Verwendung der Adsorptionsisotherme von Stickstoff bei der Temperatur des flüssigen Stickstoffs (77 K) am Faujasite type zeolite unter Verwendung des Saito-Foley-Modells und der Parameter für Zeolith (Ross/Olivier und de la Puente) sowie Aluminosilicate (siehe Tabelle 1)

Tabelle 1: Parameter für die physikalischen Eigenschaften im Saito-Foley-Modell (Zylinderporengeometrie)

Adsorbens	Zeolite [*] (Ross/Olivier, BAM)	Alumino- silicate [*]	Zeolite (de la Puente ^{**})
Durchmesser, d, nm	0,304	0,276	0,276
Durchmeseser bei Nullenergie, d, nm	0,2609	0,2369	0,2575
Polarisierbarkeit, α , cm ³	8,5 10 ⁻²⁵	2,5 10 ⁻²⁴	8,5 10 ⁻²⁵
magnetische Suszeptibilität, χ , cm ³	1,94 10 ⁻²⁹	1,3 10 ⁻²⁹	1,94 10 ⁻²⁹
Teilchendichte, N, Moleküle/cm ²	3,75 10 ¹⁵	1,31 10 ¹⁵	3,75 10 ¹⁵
daraus resultierender Mikroporenbereich	≤0,015	≤0,0919	≤0,045
(Durchmesser < 2 nm), p/p₀			

Adsorptiv	Stickstoff [*]	Stickstoff**
Temperatur, T, K	77,15	77,35
Durchmesser, d, nm	0,300	0,315
Polarisierbarkeit, α , cm ³	1,76 10 ⁻²⁴	1,76 10 ⁻²⁴
magnetische Suszeptibilität, χ , cm ³	3,6 10 ⁻²⁹	2,00 10 ⁻²⁹
Teilchendichte, N, Moleküle/cm ²	6,71 10 ¹⁴	6,70 10 ¹⁴

* MICROMERITICS, ASAP 2010, Accelerated Surface Area and Porosimetry System, Operator's Manual, V3.00, September 1996, Appendix C, S. C-30, C-31

^{**} DE LA PUENTE, G.; SEDRAN, ULISES A.: Microporous Materials 12 (1997) 251 - 260, S. 257

Das **spezifische Mikroporenvolumen** wird als Volumen des adsorbierten Gases in der Flüssigphase (= flüssig) angegeben. Der Dichte-Umrechnungsfaktor für Stickstoff beträgt: $V_{N2, gas} \times 0,0015468 = V_{N2, flüssig}$, wobei das Gasvolumen unter Normalbedingungen (273,15 K und 101,32502 kPa) eingesetzt wird.

0,2192 cm³ g⁻¹ (flüssig),	Spezifisches Mikroporenvolumen ermittelt bei $p/p_0 = 0,0129$:
0,2205 cm³ g⁻¹ (flüssig),	und bei p/p ₀ = 0,0162:
0,2200 cm ³ g ⁻¹ (flüssig).	interpoliert bei $p/p_0 = 0,0150$:

Die Differenz des interpolierten Wertes zum spezifischen Mikroporenvolumen, das bei $p/p_0 = 0,0129$ ermittelt wurde, ist mit 0,008 cm³ g⁻¹ (flüssig) geringer als die Unsicherheit des zertifizierten Wertes s/ $\sqrt{n} = 0,0032$ cm³ g⁻¹ (flüssig) - siehe Tabelle 4.

Bestimmt man das spezifische Mikroporenvolumen nicht bei $p/p_0 = 0,0150$, sondern innerhalb der Grenzen $p/p_0 = (0,0150 \pm 0,0081)$, so entsteht dadurch ein Fehler, der maximal in der Größenordnung der Unsicherheit des zertifizierten Wertes liegt.

3. Probenteilung und Verpackung

Die Probenteilung und Homogenisierung wurde mit einem Rotationsprobenteiler durchgeführt unter Verwendung des Cross-Riffling-Schemas:

Vor der Probenteilung befindet sich das Material in den Gefäßen Nr. 1 bis Nr. 8 Der Inhalt jedes dieser Gefäße wird mit einem Probenteiler in 8 Teile geteilt. Nach einer

wie im Schema angegebenen Art und Weise erfolgt dann eine Zusammenführung von jeweils 8 Untermengen zu einer Teilmenge. Schließlich befinden sich die so erzeugten 8 Teilmengen in den Gefäßen A bis H. Dieses Verfahren kann mehrstufig fortgesetzt werden. Dadurch wird das Material nicht nur geteilt, sondern gleichzeitig auch homogenisiert.

1	2	3	4	5	6	7	8		
₩	Ų	Ų	Ų	₩	Ų	Ų	Ų		
1-8	2-7	3-6	4-5	5-4	6-3	7-2	8-1	\Rightarrow	Н
1-7	2-6	3-5	4-4	5-3	6-2	7-1	8-8	\Rightarrow	G
1-6	2-5	3-4	4-3	5-2	6-1	7-8	8-7	\Rightarrow	F
1-5	2-4	3-3	4-2	5-1	6-8	7-7	8-6	\Rightarrow	E
1-4	2-3	3-2	4-1	5-8	6-7	7-6	8-5	\Rightarrow	D
1-3	2-2	3-1	4-8	5-7	6-6	7-5	8-4	\Rightarrow	С
1-2	2-1	3-2	4-7	5-6	6-5	7-4	8-3	\Rightarrow	В
1-1	2-8	3-1	4-6	5-5	6-4	7-3	8-2	\Rightarrow	Α

Siehe bei VAN DER VEEN

Verpackung des Materials

Verpackung: Glasflaschen zu je 30 ml

Inhalt: mindestens 10 g

Durch Stichproben wurde mittlere eine Einwaage von $(11, 2 \pm 0, 5)$ g ermittelt.

4. Bestimmung der zertifizierten Größen und deren Genauigkeit

Zusammenfassung

Der zertifizierte Wert und dessen Genauigkeit wurde nach den "Guidelines for the production and certification of BCR reference materials" (BCR-Guide: BCR/01/97) bestimmt. Da durch die Laboratorien verschiedene Messgeräte benutzt wurden, erhielt man sehr heterogene Standardabweichungen. Deshalb fand die "No Pooling"-Version der BCR-Recommendations Anwendung.

Folgende Prozeduren wurden verwendet:

- Grubbs-Ausreißertest (GRUBBS, ANSI/ASTM E178-80, ISO 5725-1:1994) für die Mittelwerte der Laboratorien (1 %, zweiseitig, iteriert). Elimination der Ausreißer.
- Kein Ausreißer-Test für die Standardabweichungen und keine Varianzanalyse (ANOVA), da, wie oben erwähnt, verschiedene Messgeräte benutzt und heteroscedastische Daten, d. h. ungleiche Streuungen, a priori angenommen wurden.
- Kolmogorov-Smirnov-Lilliefors-Test (LILLIEFORS, PEARSON) auf Normalverteilung für die Mittelwerte der Laboratorien.
- Bestimmung der Standardabweichung und eines 95 % der Messwerte enthaltender Toleranzbereich mit einer 95 %igen Genauigkeit für die Labormittelwerte.
- Berechnung des zertifizierten Wertes (Mittelwert der Labormittelwerte).
- Bestimmung der Genauigkeit des zertifizierten Wertes (Standardabweichung der Schätzung und Vertrauensbereich mit einer 95 %igen Genauigkeit).
 Siehe in ISO Guide 33 : 1989 "Uses of certified reference materials" zur Einführung in die Verwendung von zertifizierten Referenzmaterialien.

Statistische Auswertung

Der Fall "No Pooling" im BCR Guide beinhaltet ein sehr einfaches statistisches Modell, in welches nur die Labormittelwerte und nicht die einzelnen Messwerte eingehen.

 $x_i = \mu + \Delta \mu_i$, i=1,...,n

 $\{\Delta \mu_i \sim N(0,\sigma^2), i=1,...,n\}$ statistisch unabhängig, normalverteilte Zufallsvariable

wobei

n	Anzahl der Laboratorien
x _i	Mittelwert des Laboratoriums i
μ Δμ _i	unbekannter Wert, der zertifiziert werden soll (zufälliger) Bias (systematischer Fehler) des Laboratoriums i
σ N(0, σ²)	Standardabweichung zwischen den Laboratorien Normalverteilung mit dem Mittelwert 0 und der Varianz $\sigma^{\rm 2}$
dia wabra	a Labarmittalwarta y niaht armittaltwardan könnan wurdan di

Da die wahren Labormittelwerte x_i nicht ermittelt werden können, wurden die Labormittelwerte \overline{x}_i benutzt.

Statistik:

k _i	Anzahl der Messwerte des Labors i		
x _{ij} , j=1,,k _i	Messwert #j des Labors i	(# - sprich Nummer)	
$\overline{\mathbf{x}}_{i} = 1/k_{j} \Sigma_{j} \mathbf{x}_{ij}$	Mittelwert der Daten aus de Schätzung für den Labormit	m Labor i, ttelwert	
$\overline{\overline{\mathbf{x}}} = 1/n \Sigma_{\mathbf{j}} \overline{\mathbf{x}}_{\mathbf{i}}$	Mittelwert der Labormittelwerte (der zertifizierte Wert Schätzung für μ .		
$s^2 = 1/(n-1) \Sigma_j (\overline{x}_i - \overline{\overline{x}})^2$	Varianz der Labormittelwert	e, Schätzung für σ²	

Zertifizierte Größen: (siehe Abb. 7)

	$\overline{\overline{\mathbf{x}}}$	zertifizierter Wert
	s∕√n	Standardabweichung des Mittelwertes der Labormittelwerte, Genauigkeit des zertifizierten Wertes gemäß ISO/IEC/OIML/BIPM, 1995
	$\overline{\overline{x}}$ +/- t _{n-1;0,975} s/ \sqrt{n}	Vertrauensbereich für μ , mit 95 %iger Sicherheit
	ā +/- k _{n;0,95} (0,95) s	95 % aller Werte umfassender Toleranzbereich für die Labormittelwerte, mit 95 %iger Sicherheit
wo	bei	
	^t n-1;0,975	97,5 % Quantile der Studentschen t-Verteilung mit n-1 Freiheitsgraden (DIXON, S. 512)
	k _{n;0,95} (0,95)	95 % aller Werte umfassender, mit 95 %iger Sicherheit bestimmter Toleranzfaktor für eine Probe der Größe n für eine Normalverteilung (DIXON, S. 583)

Anmerkung:

- Der Vertrauensbereich beinhaltet den Wert μ. Diese Aussage ist mit einer Wahrscheinlichkeit von 95 % wahr.
- Der 95 % der Werte umfassende Toleranzbereich beinhaltet 95 % aller Labormittelwerte, die in Zukunft von einem beliebigen Labor ermittelt wird. Die Trefferwahrscheinlichkeit dieser Aussage beträgt 95 %.

Abb. 7: Zertifizierungsreport, verwendete Größen

5. Eignungstest (Proficiency test)

Material: Für Mikroporen existiert noch kein zertifiziertes Referenzmaterial. Deshalb wurden die Messungen zum Eignungstest an einem Zeolith vom Typ 13X durchgeführt, einer Testsubstanz von der Micromeritics Instrument Corporation (Norcross, USA). Sie wird im Eignungstest als "Substanz B" bezeichnet.

Methode: Für Mikroporen ist kein ISO-Standard verfügbar. Als Referenzwert wurde die aus den Adsorptionsisothermen errechnete Monoschichtkapazität von Argon bei der Temperatur des flüssigen Argons (87 K) bei einem relativen Druck von $p/p_0 = 0,015$ ermittelt.

Die spezifische Oberfläche nach dem Langmuir wird wie folgt berechnet:

$$A_{\text{Langmuir}} = \frac{\sigma \cdot N_{\text{A}} \cdot V_{\text{m}}}{V_{\text{mol}}}$$

(in der Monoschicht).

Dabei sind:

A _{Langmuir}	m ² g ⁻¹	- spezifische Oberfläche nach Langmuir
V _m	cm³ g⁻¹	- Monoschichtkapazität
V _{mol} = 0,022414	m ³ mol ⁻¹	- molares Volumen (Gas)
$N_A = 6,022 \ 10^{23}$	mol ⁻¹	- Avogadrosche Zahl
$\sigma_{Ar} = 0,142$	nm²	 Platzbedarf eines Argonmoleküls (in der Monoschicht).
Für Stickstoff verwe	endet man	
$\sigma_{N_2} = 0,162$	nm²	- Platzbedarf eines Stickstoffmoleküls

- 16 -

Programm "langmuir.m" zur Berechnung der Monoschichtkapazität von mikroporösen Stoffen

Zu Beginn werden aus der Adsorptionsisotherme die für die Langmuir-Berechnung benötigten Daten durch das Programm extrahiert. Der für diesen Eignungstest festgelegte Langmuirbereich erstreckt sich zwischen $\left(\frac{p}{p_0}\right)_{min} = 1 \cdot 10^{-6}$ und $\left(\frac{p}{p_0}\right)_{max} = 0,015$. Die Auswahl des Minimums und des Maximums des Intervalls erfolgt durch die Suche des Minimums folgender Differenzen:

 $\Delta_1 = \left| \left(\frac{p}{p_0} \right)_k - \left(\frac{p}{p_0} \right)_{\min} \right| \quad \text{und} \quad \Delta_2 = \left| \left(\frac{p}{p_0} \right)_k - \left(\frac{p}{p_0} \right)_{\max} \right|.$

Das heißt, dass dieser Bereich durch die Isothermendaten bestimmt wird, die am nächsten zu den Werten $\left(\frac{p}{p_0}\right)_{min}$ beziehungsweise $\left(\frac{p}{p_0}\right)_{max}$ liegen. Bei Anwendung dieses Auswahlkriteriums für die Messdaten wird ein kleinerer Auswertefehler erreicht als bei Verwendung der Messdaten, die nur innerhalb des oben definierten Intervalls liegen. Mit den ausgewählten Isothermendaten kann eine Langmuir-Transformation durchgeführt werden:

$$v_{ads} := \frac{\frac{p}{p_0}}{v_{ads}}$$

Danach wird durch lineare Regression die Langmuir-Gerade berechnet:

$$\frac{\frac{p}{p_0}}{V_{ads}} = f(\frac{p}{p_0})$$

Die Monoschichtkapazität V_m ergibt sich aus dem reziproken Wert der Steigung der Regressionsgeraden:

$$V_m = \frac{1}{a}$$

Tabelle 2: Bestimmung des Referenzwertes für die Substanz B (validation of the method): aus den Adsorptionsisothermen an der Substanz B errechnete Monoschichtkapazität von Argon als Gasvolumen unter Normalbedingungen bei der Temperatur des flüssigen Argons (87 K) bei einem relativen Druck von $p/p_0 = 0,015$

Labor	Gerät	File	Monoschichtkapazität
A	ASAP 2010 # 340 (BAM)	zeo137.rpt	157,867 cm ³ g ⁻¹
В	ASAP 2010 # 815	zeo81.rpt	155,549 cm ³ g ⁻¹
	(BAM)	zeo123b.rpt	$151,792 \text{ cm}^3 \text{ g}^{-1}$
		zeo125.rpt	153,414 cm ³ g ⁻¹
		zeo126.rpt	150,638 cm ³ g ⁻¹
		zeo127.rpt	153,948 cm ³ g ⁻¹
		zeo128.rpt	150,004 cm ³ g ⁻¹
		zeo131.rpt	152,054 cm ³ g ⁻¹
		zeo67.rpt	148,323 cm ³ g ⁻¹
		Mittelwert	152,0 cm ³ g ⁻¹
		Standardabweichung	2,324 cm ³ g ⁻¹
С	ASAP 2010 # 853	profi036.rpt	152,641 cm³ g⁻¹
	(BAM)	profi037.rpt	153,404 cm³ g⁻¹
		profi038.rpt	<u>152,097 cm³ g⁻¹</u>
		Mittelwert	152,7 cm ³ g ⁻¹
		Standardabweichung	0,657 cm³ g⁻¹
r			<u> </u>
D	Autosorb-1	zeo23.raw	163,909 cm³ g⁻¹
	(BAM)	zeo24.raw	164,483 cm³ g⁻¹
		zeo25.raw	162,890 cm [°] g ′
		zeo26.raw	<u>162,197 cm³ g⁻¹</u>
		Mittelwert	163,4 cm³ g⁻¹
		Standardabweichung	1,022 cm³ g⁻'
E	Sorptomatic 1990	zeo773.txt	160,981 cm ³ g ⁻¹
	(BAM)	zeo774.txt	160,847 cm ³ g ⁻¹
		zeo776.txt	154,114 cm ³ g ⁻¹
		Mittelwert	158,6 cm ³ g ⁻
		Standardabweichung	3,927 cm³ g⁻¹
		0.470	450,400 3 -1
F	ASAP 2010	0176.rpt	156,199 cm [°] g ⁻¹
	(Micromeritics)	0177.rpt	$160,173 \text{ cm}^3 \text{ g}^-$
		0178.rpt	<u>155,487 cm° g⁻'</u>
		Mittelwert	157,3 cm ³ g ⁻¹
		Standardabweichung	2,525 cm³ g⁻'

Referenzwert (Monoschichtkapazität)	$\bar{\bar{x}}$ = 157,0 cm ³ g ⁻¹
Standardabweichung	$s = 4,2 \text{ cm}^3 \text{g}^{-1}$
Unsicherheit	$s / \sqrt{n} = 1.7 \text{ cm}^3 \text{g}^{-1}$
95 % Vertrauensbereich	$\overline{\overline{x}} \pm t_{n-1; 1-\alpha/2} \text{ s/}\sqrt{n} = (157,0 \pm 4,4) \text{ cm}^3 \text{ g}^{-1}$
wobei $t_{5;0,975}$ = 2,571 (DIXON, S. 512)	

95 % beinhaltend, 95 % **Toleranzbereich** $\overline{\overline{x}} \pm k_{n; 1-\alpha} (p) s = (157, 0 \pm 18, 5) cm^3 g^{-1}$ wobei p = 0,95, α = 0,05, $k_{6; 0,95} (0,95) = 4,41$ (DIXON, S. 583) Tabelle 3: Ergebnisse des Eignungstests für die Teilnehmer am Zertifizierungsringversuch: aus den Adsorptionsisothermen an der Substanz B errechnete Monoschichtkapazität von Argon als Gasvolumen unter Normalbedingungen bei der Temperatur des flüssigen Argons (87 K) bei einem relativen Druck von $p/p_0 = 0,015$

Labor-Nr.	Gerät	File	Monoschichtkapazität
			2 1
01	Autosorb-1MP	subbAr.001	$177,165 \text{ cm}^3 \text{ g}^{-1}$
		subbAr.002	$176,341 \text{ cm}^3 \text{ g}^{-1}$
		subbAr.003	172,111 cm [°] g
		Mittelwert	$1/5,2 \text{ cm}^{\circ} \text{g}^{\circ}$
		Standardabweichung	2,711 cm² g ²
03	ASAP 2010	sub-b-1.txt	155,203 cm ³ g ⁻¹
		sub-b-2.txt	$150,481 \text{ cm}^3 \text{ g}^{-1}$
		sub-b-3.txt	157,025 cm ³ g ⁻¹
		Mittelwert	$154,2 \text{ cm}^3 \text{ g}^{-1}$
		Standardabweichung	3,377 cm ³ g ⁻¹
		704004	470,000 3 -1
05	Autosord-3MP	as791601.raw	$172,289 \text{ cm}^3 \text{ g}^3$
		as/92203.raw	$160,281 \text{ cm}^2 \text{ g}^3$
		As/92502.18W	$\frac{161,533 \text{ cm}^3 \text{ g}^{-1}}{404.7 \text{ gm}^3 \text{ g}^{-1}}$
		Nittelwert	164,7 cm ³ g
		Stanuaruabweichung	
06	ASAP 2010	Mal0125.s	154,766 cm ³ g ⁻¹
		Mal0126.s	149,055 cm ³ g ⁻¹
		Mal0136.s	151,689 cm ³ g ⁻¹
		Mittelwert	151,837 cm ³ g ⁻¹
		Standardabweichung	2,858 cm ³ g ⁻¹
	Ourseis aut 000		
09	Omnisord 360	SUD-D-1.tXt	$151,545 \text{ cm}^3 \text{ g}^3$
		SUD-D-2.tXt	$151,507 \text{ cm}^3 \text{ g}^3$
		SUD-D-3.tXt	<u>156,478 cm² g</u>
		Mittelwert	153,2 cm ³ g
		Standardabweichung	2,059 CHT g
12	ASAP 2010	002-072.rpt	141,399 cm ³ g ⁻¹
		002-073.rpt	140,053 cm ³ g ⁻¹
		002-075.rpt	140,807 cm ³ g ⁻¹
		Mittelwert	140,75 cm ³ g ⁻¹
		Standardabweichung	0,675 cm³ g⁻¹
17	Sorptomatic 1990	b1.txt	163,258 cm ³ g ⁻¹
		b2.txt	$163,147 \text{ cm}^3 \text{ g}^{-1}$
		b3.txt	<u>160,157 cm³ g⁻¹</u>
		Mittelwert	$162,2 \text{ cm}^3 \text{ g}^1$
		Standardabweichung	1,759 cm° g⁻'

Labor-Nr.	Gerät	File	Monoschichtkapazität
10	A O A D 0040	004.004.1.1	4 40 000 3 -1
19	ASAP 2010	001-001.txt	149,226 cm [°] g ⁻¹
		001-002.txt	$150,866 \text{ cm}^2 \text{ g}^3$
		002-001.txt	150,853 cm ² g
		Mittelwert	$150,3 \text{ cm}^{\circ}\text{g}^{\circ}$
		Standardabweichung	0,943 cm² g
20			450 444 am ³ a ⁻¹
20	ASAP 2010	zeo125.rpt	153,414 cm ² g
		zeo126.rpt	150,638 cm ² g ⁻¹
		zeo127.rpt	$153,948 \text{ cm}^2 \text{ g}^2$
		zeo128.rpt	$150,004 \text{ cm}^2 \text{ g}^3$
			$142,092 \text{ cm}^2 \text{ g}^3$
		zeo131.rpt	152,054 cm ³ g
			151,792 Cm ³ g
		Zeosi.rpt	155,549 Cm ² g
			$151,2 \text{ cm}^{\circ} \text{g}^{\circ}$
		Standardabweichung	4,091 cm² g
24	Corretomotic 1000		$160.054 \text{ sm}^3 \text{ s}^{-1}$
21	Surpionalic 1990		160,954 CIII g
			160,823 Cm ³ g ⁻¹
			154,089 CIII g
			$158,6 \text{ cm}^3 \text{ g}^{-1}$
		Standardabweichung	3,926 cm° g
22	Autocorb 40		400.000 cm ³ c ⁻¹
22	Autosord-1C	zeo23.raw	$163,909 \text{ cm}^2 \text{ g}^2$
		zeo24.raw	164,483 cm ² g ⁻¹
		zeo25.raw	$162,890 \text{ cm}^{\circ} \text{g}^{\circ}$
		zeo26.raw	162,197 cm ² g
		Mittelwert	163,4 cm [°] g
		Standardabweichung	1,022 cm° g '
		(1000 I	450.044 3 -1
30	ASAP 2010	profiu36.rpt	152,641 CM° g '
		profil037.rpt	153,404 cm [°] g ¹
		profiu38.rpt	152,097 Cm° g '
		Mittelwert	152,7 cm ³ g ⁻¹
		Standardabweichung	0.657 cm³ a⁻′

Abb. 8: Ergebnisse des Eignungstests

Alle Laboratorien haben den Eignungstest für mikroporöse Materialien bestanden. Die Mittelwerte der Monoschichtkapazität, die aus der Adsorptionsisothermen von Argon bei der Temperatur des flüssigen Argons (87 K) an der Substanz B bis zu einem relativen Druck von $p/p_0 = 0,015$ ermittelt wurden, liegen innerhalb des Toleranzbereiches.

6. Untersuchung von Homogenität und Stabilität

Um die Homogenität eines Materials zu untersuchen, ist es notwendig, die Messunsicherheit von der Heterogenität des Materials zu trennen. Wenn wiederholte Messungen an derselben Probe möglich sind (zerstörungsfreie Messungen) könnte dies durch Mittelung der Ergebnisse erreicht werden. Eine Mittelung gestattet, den Einfluss der Messunsicherheit zu minimieren. Deshalb fordert der Homogenitätstest nach der ASTM E 826 - 85 (wie er im BCR-Guide empfohlen wird), dass eine Probe mehrfach gemessen werden soll.

Mehrfachmessungen in der Physisorption sind kompliziert und dauern oft sehr lang. Bei Benutzung von Zeolith ist ein Messen ohne Veränderung des Messobjektes (nondestructive) zwar möglich - aber zugleich sehr zeitaufwendig. Jede Messung für unser ausgewähltes mikroporöses Material dauert mehr als 60 Stunden.

Deshalb haben wir Informationen zur Homogenität von Proben gewonnen durch Vergleich des Variationskoeffizienten einer Kenngröße eines unbekannten Materials mit dem Variationskoeffizienten eines Materials, vom dem man weiß, dass es homogen ist. Dieses Vorgehen ist richtig, wenn die Wiederhol-Standardabweichung für die Messungen für beide Materialien gleich ist. Unter dieser Annahme rühren ermittelte Unterschiede von der Heterogenität her.

Die Stabilität wurde untersucht durch den Test auf signifikante Unterschiede (Drift) bezüglich des Mittelwertes und/oder der Standardabweichung in längeren Zeitabständen.

Vergleich von zwei Proben

Es seien n₁, \bar{x}_1 , s_1^2 und n₂, \bar{x}_2 , s_2^2 der Stichprobenumfang, der geschätzte Mittelwert und die geschätzte Varianz von zwei Proben. Um zu entscheiden, ob die Mittelwerte und Varianzen sich signifikant unterscheiden, werden statistische Standardverfahren angewendet (t-Test und F-Test). Die Annahme (Hypothese) ist, dass die wahren Mittelwerte oder Varianzen bei den zugrunde gelegten Verteilungen gleich sind. Der statistische Test entscheidet, ob man an dieser Hypothese festhalten kann, oder ob man sie verwerfen muss zugunsten einer spezifischen Alternative. Jeder statistische Test wird bestimmt durch sein Niveau α , welches die Wahrscheinlichkeit beschreibt, die Hypothese (irrtümlicherweise) zu verwerfen, obwohl sie wahr ist. Die Wahrscheinlichkeit β , eine Hypothese zu akzeptieren, obwohl sie falsch ist, kann dann berechnet werden. Diese Wahrscheinlichkeit hängt stark vom Stichprobenumfang ab. Das heißt, sogar eine sehr kleine Differenz kann signifikant sein, wenn der Stichprobenumfang groß genug ist, um sie anzuzeigen. (Statistische) Signifikanz und die Größe sind unterschiedliche Begriffe. Der Test wurde so gestaltet, um herauszufinden, ob unterschiedliche Mittelwerte bzw. Varianzen nicht als zufällig interpretiert werden können.

Das Testergebnis hängt von der Prüfungsstatistik (s. u.) ab, die aus den Daten berechnet wird. Wenn die Prüfungsstatistik eine kritische Grenze übersteigt, dann muss die Hypothese verworfen werden.

Vergleich zweier Mittelwerte mittels einseitigen t-Tests

(SNEDECOR, S. 97; DIXON, S. 126 ff.)

Hypothese H ₀ :	$\mu_1 = \mu_2$
Alternative:	$\mu_1 > \mu_2$

Prüfungsstatistik:	$t = (\overline{x}_{1} - \overline{x}_{2}) / \sqrt{({s_{1}}^{2} / n_{1}) + ({s_{2}}^{2} / n_{2})}$
verwerfe H_0 , wenn:	$t > t_{v; 1-\alpha} s/\sqrt{n}$
wobei ²	$v = \frac{({s_1}^2/n_1 + {s_2}^2/n_2)^2}{\frac{({s_1}^2/n_1)^2}{n_1 - 1} + \frac{({s_2}^2/n_2)^2}{n_2 - 1}}$

Diese Variante des t-Tests nimmt nicht an, dass die Varianzen σ_1^2 und σ_2^2 gleich sind.

Vergleich von zwei Varianzen mittels einseitigen F-Tests (DIXON, S. 116 ff.)

Hypothese H₀:	$\sigma_1^2 = \sigma_2^2$
Alternative:	$\sigma_1^2 > \sigma_2^2$
Prüfungsstatistik:	$F = s_1^2 / s_2^2$
verwerfe H ₀ , wenn:	F > F_{n1-1, n2-1; 1-\alpha}

Homogenitätstest

Der F-Test wird angewendet, um den Variationskoeffizienten der unbekannten Substanz gegen den des Referenzmaterials "Alumina Type 60 CRM BAM-PM-103" zu vergleichen.

Hypothese H ₀ : Alternative:	$\sigma / \mu = \sigma_{\text{Ref}} / \mu_{\text{Ref}}$ $\sigma / \mu > \sigma_{\text{Ref}} / \mu_{\text{Ref}}$	
Prüfungsstatistik: verwerfe H ₀ , wenn:	$F = cv^{2} / cv_{Ref}^{2}$ $F > F_{n-1, nRef-1; 1-\alpha}$	mit $cv = s/\overline{x}$ (Variationskoeffizient)

Der Test ist nur eine Näherung, da die Prüfungsstatistik cv^2 / cv_{Ref}^2 nicht exakt der F-Verteilung folgt. (Siehe LOHRDING für einen exakten Test.)

Referenzsubstanz

Alumina Type 60 CRM BAM-PM-103 (hergestellt durch die BAM)

Stichprobenumfang:	n _{Ref}	=	9
Mittelwert:	$\overline{\mathbf{X}}_{Ref}$	=	158,55
Standardabweichung:	S _{Ref}	=	0,70222
$cv_{Ref} = s_{Ref} / \overline{x}_{Ref}$		=	0,004443

 $^{^2}$ Dixon benutzt eine etwas abweichende Formel für den genäherten Freiheitsgrad ν

Datensätze - Faujasite type zeolite

Datensatz #1: Faujasite type zeolite / Argon (03.03. - 04.04.1997 / ASAP #815)

spezifische Monoschichtkapazität / Langmuir-Modell (cm³ g⁻¹)

142,4846 Grubbs 5 % 144,7330 145,4319 145,2612 145,0259 145,0247 145,1287 144,2465 144,1375 144,6470 $n_1 = 10$ $\bar{x}_1 = 144,612100$ $s_1 = 0,856527$ $s_1^2 = 0,733639$

Datensatz #2: Faujasite type zeolite / Argon (07.10. - 25.11.1998 / ASAP #853)

spezifische Monoschichtkapazität / Langmuir-Modell (cm³ g⁻¹)

144,3922 142,9369 143,3160 143,8929 144,2492 143,5127 143,5085 144,5341 144,1839 145,2887 143,4252 145,1675 143,3816 143,3130 143,1874 143,9812 $n_2 = 16$ \overline{x}_2 = 143,891937

 $s_2 = 0,697900$ $s_2^2 = 0,487064$

Homogenitätstest - Faujasite type zeolite

Datensatz #1: Faujasite type zeolite / Argon (03.03. - 04.04.1997 / ASAP #815)

Hypothese H ₀ :	σ_1 / μ_1 =	σ_{Ref} / μ_{Ref}
Alternative:	σ ₁ / μ ₁ >	σ_{Ref} / μ_{Ref}
spezifische Monoschichtk Ausreißer	/ apazität = 142,4	Langmuir-Modell (cm ³ g ⁻¹) 846 (5 %)
Stichprobenumfand: n.	=	10
Mittelwert v	=	144 612100
$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$	_	0.956527
Standardabweichung: s_1	=	0,856527
$CV_1 = S_1 / X_1$	=	0,00592

 $F = cv_1^2/cv_{Ref}^2 = 1.78 < 2.56 = F_{9,8;0.90}$

Die Hypothese H₀ kann nicht mit 90 %iger Sicherheit verworfen werden (α -level). (Die Variationskoeffizienten unterscheiden sich nicht signifikant.)

Datansatz #2: Faujasite type zeolite / Argon (07.10. - 25.11.1998 / ASAP #853)

Hypothese H ₀ :	σ_2 / μ_2 = σ_{Ref} / μ_{Ref}
Alternative:	σ_2 / μ_2 > σ_{Ref} / μ_{Ref}

spezifische Monoschichtkapazität / Langmuir-Modell (cm³ g⁻¹) keine Ausreißer gefunden

Stichprobenumfang: n ₂	=	16
Mittelwert: \overline{x}_2	=	143,891937
Standardabweichung: s ₂	=	0,697900
$cv_2 = s_2/\overline{x}_2$	=	0,00486

 $F = cv_2^2/cv_{Ref}^2 = 1.20 < 2.46 = F_{15,8;0.90}$

Die Hypothese H₀ kann nicht mit 90 %iger Sicherheit verworfen werden (α -level).

(Die Variationskoeffizienten unterscheiden sich nicht signifikant.)

Stabilitätstest - Faujasite type zeolite

Vergleich von Datensatz #1 und Datensatz #2

Vergleich der Mittelwerte

 $\begin{array}{ll} \text{t-Test:} \\ \text{Hypothese } H_0: & \mu_1 = \mu_2 \\ \text{Alternative:} & \mu_1 > \mu_2 \\ t = (\overline{x}_1 - \overline{x}_2) / \sqrt{(s_1^2 / n_1) + (s_2^2 / n_2)} \\ & = 2.235 > 1.746 = t_{16;0.95} \\ & < 2.583 = t_{16;0.99} \end{array}$

Hypothese H_0 wird mit 95 % iger Sicherheit verworfen, kann aber nicht mit 99 % iger Sicherheit verworfen werden.

(Die Mittelwerte unterscheiden sich signifikant auf dem 5 % Niveau.)

Der Vergleich der Varianzen

F-Test: Hypothese $H_0: \sigma_1^2 = \sigma_2^2$ Alternative: $\sigma_1^2 > \sigma_2^2$

 $F = s_1^2/s_2^2 = 1.505 < 2.086 = F_{9,15;0.90}$

Die Hypothese H₀ kann nicht mit 90 %iger Sicherheit verworfen werden.

(Die Varianzen unterscheiden sich nicht signifikant.)

Schlussfolgerungen

Der zertifizierte Wert \overline{x} und seine Unsicherheit s/ \sqrt{n} sind eine Kennzeichnung des Mittelwertes, der nicht die Heterogenität beinhaltet. Von einem Laboratorium kann nicht erwartet werden, dass es Werte innerhalb der Unsicherheit des zertifizierten Wertes findet.

Wenn die Standardabweichung bezüglich der Heterogenität (Stabilität) klein im Vergleich zu s ist, sollte der Eignungstest unter Benutzung von z-Scores (ISO Guide 43) bezüglich der Standardabweichung der Labormittelwerte (s), die aus den Zertifizierungsanalysen ermittelt wurden, durchgeführt werden.

Wenn diese Standardabweichungen nicht klein im Vergleich zu s sind, dann sind Korrekturen für die Standardabweichung und/oder für den zertifizierten Wert bei der Berechnung der z-Scores notwendig.

Homogenität

Das Kandidatenmaterial (Faujasite type zeolite) ist weniger homogen als die Referenzsubstanz "Alumina Type 60 / CRM BAM-PM-103" (hergestellt durch die BAM).

Substanz	Standardabweichung der spezifischen	s / Ringversuch
	Monoschichtkapazität	(aus dem EC Projekt
	(Heterogenität + Messunsicherheit)	SMT4-CT95-2025)
Faujasite type	#1: 0,857 cm ³ g ⁻¹ (entspricht 3,27 m ² g ⁻¹)	23,8 m ² g ⁻¹ ³
zeolite	#2: 0,698 cm ³ g ⁻¹ (entspricht 2,66 m ² g ⁻¹)	

Die kombinierte Standardabweichung aus Heterogenität und Messunsicherheit ist kleiner als s. Somit ist auch die Standardabweichung bezüglich der Heterogenität klein im Vergleich zu s. Folglich ist das Kandidatenmaterial ausreichend homogen.

Stabilität

Die Drift $(\Delta \overline{x})$, erhalten aus dem Stabilitätstest im Vergleich mit der Standardabweichung der Labormittelwerte (s):

Substanz	Zeitraum	Drift / Stabilitätstest	s / Ringversuch
			(aus dem EC Projekt
			SMT4-CT95-2025)
Faujasite type	19 Monate	$\overline{x}_1 - \overline{x}_2 = 0,720 \text{ cm}^3 \text{ g}^{-1}$	23,8 m ² g ⁻¹ ³
zeolite		(entspricht 2,75 m ² g ⁻¹)	

Die Drift des Faujasite type zeolites ist vernachlässigbar im Vergleich zur geschätzten Standardabweichung der Labormittelwerte. Das Faujasite type zeolite kann somit als langzeitstabil angesehen werden.

³ Argon: 1 cm³ g⁻¹ entspricht 3.8155 m² g⁻¹

7. Zertifizierungsringversuch

Adsorption von Stickstoff am Faujasite type zeolite bei der Temperatur des flüssigen Stickstoffs (77 K)

Koordinator

Bundesanstalt für Materialforschung und -prüfung (BAM)

Teilnehmer am Zertifizierungsringversuch

Insgesamt nahmen 11 Partner am Zertifizierungsringversuch teil. Sie benutzten 14 Geräte (5 verschiedene Typen), die von 4 verschiedenen Firmen hergestellt wurden.

Die Bundesanstalt für Materialforschung und -prüfung nahm am Zertifizierungsringversuch mit 4 Geräten teil.

BP Chemicals Limited Chemical Analytical Team Chertsey Road Sunbury-on-Thames Middlesex TW16 7LN United Kingdom (P. N. Aukett, C. Heywood)

Bundesanstalt für Materialforschung und -prüfung (BAM) Fachgruppe I.1 Anorganisch-chemische Analytik; Referenzmaterialien Rudower Chaussee 5 D-12489 Berlin-Adlershof Deutschland (K. Meyer und Mitarbeiter)

Centre de Thermodynamique et de Microcalorimétrie du C.N.R.S. 26, rue du 141ème R.I.A. F-13003 Marseille Cedex 3 France (J. Rouquérol, F. Rouquérol)

Delft University of Technology Faculty of Chemical Technology and Materials Science Department of Chemical Engineering Julianalaan 136 NI-2628 BL Delft The Netherlands (J. C. Groen) Ecole Nationale Supérieure de Chimie de Montpellier Laboratoire de Matériaux Catalytiques et Catalyse en Chimie Organique 8, Rue de l'Ecole Normale F-34296 Montpellier Cedex 5 France (A. Germain, C. Rabeson)

Friedrich-Schiller-Universität Jena Chemisch-Geowissenschaftliche Fakultät Institut für Physikalische Chemie Lessingstraße 10 D-07743 Jena Deutschland (W. Vogelsberger, J. Sonnefeld)

Micromeritics Belgium Oude Haachtsesteenweg 107, C3 B-1831 Diegem Belgium (R. Maley, E. Davis)

Quantachrome GmbH Rudolf-Diesel-Str. 12 D-85235 Odelzhausen Deutschland (K.-J. Rath, M. Thommes)

Universität Erlangen-Nürnberg Lehrstuhl für Technische Chemie I Egerlandstraße 3 D-91058 Erlangen Deutschland (G. Emig, P. Widlok)

Universiteit van Amsterdam Department of Chemical Engineering Nieuwe Achtergracht 166 NI-1018 WV Amsterdam The Netherlands (M. C. Mittelmeijer-Hazeleger)

VTT Energy Energy Production Technologies P. O. Box 1601 Biologinkuja 5, Espoo FIN-02044 VTT Finland (J. Ranta, M. Muhola)

Beim Ringversuch verwendetet Geräte

Labor-Nr.	Gerät
01	Autosorb-1MP
03	ASAP 2010 #295
05	Autosorb-1
06	ASAP 2010
09	Omnisorb 360
11	Sorptomatic 1800
12	ASAP 2010 #002
14	ASAP 2010 #328
17	Sorptomatic 1990
19	ASAP 2010 #007
20	ASAP 2010 #815
21	Sorptomatic 1990
22	Autosorb-1C
30	ASAP 2010 #853
Summe: 14	

Typ / Hersteller	Labor-Nr.	Summe
ASAP 2010 / Micromeritics	3, 6, 12, 14, 19, 20, 30	7
Sorptomatic 1800 / CE Instruments	11	1
Sorptomatic 1990 / CE Instruments	17, 21	2
Autosorb-1/MP/C / Quantachrome	1, 5, 22	3
Omnisorb 360 / Coulter	9	1

Statistik

- 4 Gerätehersteller
- Gerätetypen Partner
- 5 11
- 14 Laboratorien (Geräte)

Adsorptionssystem / Kenngrößen / Auswerteprozeduren

Die Teilnehmer am Zertifizierungsringversuch haben Adsorptionsisothermen von Stickstoff bei der Temperatur des flüssigen Stickstoffs (77 K) am Faujasite type zeolite (mikroporös) aus der Gasphase gemessen.

Folgende **Kenngrößen** wurden bestimmt:

- die spezifische Oberfläche nach dem Langmuir-Modell
- die Porenweite (median) nach dem Saito-Foley-Modell (Zylinderporengeometrie) unter Verwendung verschiedener Parametersätze für die physikalischen Eigenschaften (siehe Tabelle 1)
- das spezifische Mikroporenvolumen

Diese Kenngrößen wurden nach drei unabhängigen Auswerteprozeduren ermittelt:

- 1. durch die Ringversuchspartner unter Verwendung der geräteeigenen Software.
- 2. durch eine einheitliche Software, die von **Micromeritics** bereitgestellt wurde.
- 3. durch eine einheitliche Software, die durch die **BAM** (I.13) entwickelt wurde.

Ausgewertete Kenngrößen

LSA-BAM	spezifische Oberfläche nach Langmuir berechnet mit BAM-Software zwischen p/p ₀ [min p/p ₀ (x _i) - 10^{-4}] < p/p ₀ < p/p ₀ [min p/p ₀ (x _j) - 0,015]
LSA-Micro	spezifische Oberfläche nach Langmuir berechnet mit Micromeritics-Software bis zu $p/p_0 = 0,015$
LSA-Partner	spezifische Oberfläche nach Langmuir berechnet mit Partner- Software
MPW-BAM	Porenweite (median) (Saito/Foley) berechnet mit BAM-Software bis zu $p/p_0 = 0,015$, entspricht einer Porenweite von 2 nm (Parameter siehe in Tabelle 1 unter ZEOLITE / BAM)
MPW-Micro	Porenweite (median) (Saito/Foley) berechnet mit Micromeritics- Software bis zu $p/p_0 = 0,015$, entspricht einer Porenweite von 2 nm (Parameter siehe in Tabelle 1 unter ZEOLITE / ROSS/OLIVIER)

MPW-AI	Porenweite (median) (Saito/Foley) berechnet mit Micromeritics- Software bis zu $p/p_0 = 0,0919$, entspricht einer Porenweite von 2 nm (Parameter siehe in Tabelle 1 unter ALUMINOSILICATE)
MPW-Pu	Porenweite (median) (Saito/Foley) berechnet berechnet mit Micromeritics-Software bis zu $p/p_0 = 0,045$, entspricht einer Porenweite von 2 nm (Parameter siehe in Tabelle 1 unter ZEOLITE / DE LA PUENTE)
SPV-BAM	spezifisches Mikroporenvolumen, berechnet mit BAM-Software Nach Interpolation wird das Mikroporenvolumen bei einem p/p ₀ berechnet, das einer Porenweite von 2 nm entspricht. Unter Verwendung des Saito-Foley-Modells und der Zeolith-Parameter aus Tabelle 1 unter ZEOLITE / ROSS/OLIVIER ist das bei p/p ₀ = 0,015
SPV-Micro	spezifisches Mikroporenvolumen berechnet mit der Micromeritics- Software am letzten Punkt bis $p/p_0 = 0,015$: p/p_0 [min (0,015 - $p/p_0(x_i)) \ge 0$],
SPV-Partner	spezifisches Mikroporenvolumen, berechnet mit Partner-Software

Konstanten und Parameter, die in der Auswertung verwendet wurden

Gaskonstante	R	=	8.,3145 J K ⁻¹ mol ⁻¹
Standarddruck	p _{STD}	=	1,01325 10 ⁵ Pa
Standardtemperatur	T_{STD}	=	273,15 K
Avogadrosche Zahl	N _A	=	6,022 10 ²³ mol⁻¹
Platzbedarf eines Stickstoffmoleküls	σ_{N_2}	=	0,162 nm ²
Dichte-Umrechnungsfaktor für Stickstoff	V _{N2, g}	as -	\times 0,0015468 = V _{N2, liquid}

8. Ergebnisse (Gesamtergebnis / zertifizierte Werte)

Die Tabelle 4 enthält eine Zusammenstellung der sta	atistischen Daten:
---	--------------------

n	Anzahl der Laboratorien (ohne Ausreißer)
$\overline{\overline{\mathbf{x}}}$	Mittelwert der Mittelwerte (zertifizierter Wert)
S	Standardabweichung der Labormittelwerte
s / √n	Standardabweichung des Mittelwertes der
	Labormittelwerte
	= Unsicherheit des zertifizierten Wertes
halber Vertrauensbereich	t _{n-1;0.975} s/√n .
	Der Vertrauensbereich beinhaltet den wahren Wert.
	Diese Aussage ist mit 95 %iger Wahrscheinlichkeit
	wahr.
halber Toleranzbereich:	k _{n;0.95} (0.95) s.
	Der Toleranzbereich enthält 95 % aller
	Labormittelwerte, die in Zukunft von einem
	beliebigen Labor gemessen werden.
	Diese Aussage ist mit 95 %iger Wahrscheinlichkeit
	wahr (Trefferwahrscheinlichkeit).
D (signifikant)	Kolmogorov-Smirnov-Statistik D, und, wenn
	signifikant nicht-normalverteilt, das Signifikanz-
	Niveau, z. B. 90 %, 95 % oder 99 %.

Obwohl teilweise verschiedene Grenzen bezüglich des relativen Drucks (p/p₀) für die Berechnung benutzt wurden, zeigt ein Vergleich der Ergebnisse der Auswertung, die mit zwei verschiedenen Softwarevarianten (von der BAM entwickelt / von Micromeritics bereitgestellt) gewonnen wurden, eine weitgehende Übereinstimmung der Standardabweichungen. Die Auswertung durch die Partner weicht teilweise signifikant von der Auswertung durch die BAM ab. Ursache hierfür sind unterschiedliche Grenzen für den relativen Druck sowie abweichende Parameter für die physikalischen Eigenschaften im Saito-Foley-Modell.

Kenngröße	n	₹	S	s/√n	halber Ver- trauens- bereich	halber Toleranz- bereich	D (signifikant)
LSA-BAM / m² g⁻¹	13	610,59	11,435	3,1715	6,9101	35,229	0,14489
LSA-Micro / m² g⁻¹	13	606,28	9,4302	2,6155	5,6986	29,052	0,17268
LSA-Partner / m ² g ⁻¹	12	623,42	18,481	5,3349	11,742	58,430	0,19090
MPD-Al / nm	11	0,58384	0,017180	0,0051800	0,011542	0,055994	0,19244
MPW-BAM / nm	11	0,86498	0,027703	0,0083528	0,018611	0,090291	0,21137
MPW-Micro / nm	11	0,86314	0,027630	0,0083308	0,018562	0,090053	0,24915 (95%)
MPD-Pu / nm	11	0,70981	0,020913	0,0063055	0,014049	0,068160	0,19031
SPV-BAM / cm ³ g⁻¹ (flüssig)	13	0,21729	0,0032112	0,00089063	0,0019405	0,0098929	0,14330
SPV-Micro / cm³ g⁻¹ (flüssig)	13	0,21620	0,0032198	0,00089303	0,0019457	0,0099196	0,18435
SPV-Partner / cm ³ g ⁻¹ (flüssig)	10	0,22415	0,0066633	0,0021071	0,0047667	0,022518	0,17830

Tabelle 4: Auswertung der Adsorptionsisothermen von Stickstoff am Faujasite type zeolite bei der Temperatur des flüssigen Stickstoffs (77 K)

LSA-BAM	spezifische Oberfläche nach Langmuir	BAM-Software
LSA-Micro	spezifische Oberfläche nach Langmuir	Micromeritics-Software
LSA-Partner	spezifische Oberfläche nach Langmuir	Partner-Software
MPW-BAM	Porenweite (median) (Saito/Foley)	BAM-Software
	(Parameter: ZEOLITE / BAM)	
MPW-Micro	Porenweite (median) (Saito/Foley)	Micromeritics-Software
	(Parameter: ZEOLITE / ROSS/OLIVIER)	
MPW-AI	Porenweite (median) (Saito/Foley)	Micromeritics-Software
	(Parameter: ALUMINOSILICATE)	
MPW-Pu	Porenweite (median) (Saito/Foley)	Micromeritics-Software
	(Parameter: ZEOLITE / DE LA PUENTE)	
SPV-BAM	spezifisches Mikroporenvolumen	BAM-Software
SPV-Micro	spezifisches Mikroporenvolumen	Micromeritics-Software
SPV-Partner	spezifisches Mikroporenvolumen	Partner-Software

Tabelle 5: Zertifizierte Werte

	Einheit	$\overline{\overline{\mathbf{x}}}$	s	s/√n	$t_{n-1;0.975} s / \sqrt{n}$	n
Spez.Mikroporen- volumen	cm ³ g⁻¹	0,217	0,003	0,001	0,002	13
Poreweite (Median-Wert)	nm	0,86	0,03	0,01	0,02	11

Tabelle 6: Nicht-zertifizierte (informative) Werte

	Einheit	Wert	s/√n	t _{n-1;0.975} s / √n	s
Spez. Langmuir- Oberfläche	$m^2 g^{-1}$	610,6	3,2	6,9	11,4
He-Dichte	g cm⁻³	2,34	_	-	_

Die He-Dichte (Materialdichte einschließlich geschlossener bzw. für He nicht zugänglicher Poren) wurde mit einem Helium-Pyknometer bei Zimmertemperatur (296 K = 23 °C) nach 24 stündiger Trocknung bei 393 K (= 120 °C) gemessen.

9. Literatur

ANSI/ASTM E178-80 Standard practice for dealing with outlying observations

- ASTM E 826-85 Standard practice for testing homogeneity of materials for the development of reference materials
- BS 7591/2: 1992 Porosity and pore size distribution of materials. Method of evaluation by gas adsorption
- DIN/ISO 5725-1: 1994 Accuracy (trueness and precision) of measurement methods and results
- DIN 32 811: 1979 Principles for the citation of reference materials and standards
- DIN 53 803: 1991 Sampling
- DIN 53 804: 1981 Statistical evaluation
- DIN 55 350: 1983 Concepts of quality assurance and statistics
- BCR/01/97 Guidelines for the production and certification of BCR reference materials
- ISO Guide 30 Terms and definitions used in connection with reference materials, 1992
- ISO Guide 31 Contents of certificates of reference materials, 1996
- ISO Guide 32 Calibration of chemical analysis and use of certified reference materials, 1997
- ISO Guide 33 Uses of certified reference materials, 1989
- ISO Guide 34 General requirements for the competence of reference material producers, 2000
- ISO Guide 35 Certification of reference materials General and statistical principles, 1989, under revision
- ISO Guide 43-1 Proficiency testing by interlaboratory comparisons -Part 1: Development and operation of proficiency testing scheme, 1997

ISO/IEC/OIML/BIPM, 1995 Guide to the expression of uncertainty in measurement

DE LA PUENTE, G.; SEDRAN, U. A.: Influence of Dealumination on the Micropore Adsorption in FCC Catalysts, Microporous Materials 12 (1997) 251 - 260

DIXON, W. J.; MASSEY, F. J., Jr.: Introduction to Statistical Analysis, 4th ed. New York, N. Y.: McGraw-Hill, 1983 FYFE, C. A.; THOMAS, J. M.; KLINOWSKI, J.; GOBBI, G. C.: MAS-NMR-Spektroskopie und die Struktur der Zeolithe, Angew. Chemie **95** (1983) 4, 257 - 273

GRUBBS, F. E.: Procedures for Detecting Outliers in Samples, Technometrics **11** (1969) 1, 1 - 21

GRUBBS, F. E.; BECK, G.: Extension of Sample Sizes and Percentage Points for Significance Tests of Outlying Observations, Technometrics **14** (1972) 4, 847 - 854

LILLIEFORS, H. W.: J. amer. statist. Assoc. **62** (1967) 399 - 402

LOHRDING, R. K.: A Two Sample Test of Equality of Coefficients of Variation or Relative Errors, J. statist. Comput. & Simulat. **4** (1975) 31 - 36

MEIER, W. W.; OLSON, D. H.; BAERLOCHER, CH.: Atlas of Zeolite Structure Types, 4th revised edition, London: Elsevier, 1996

siehe auch in: Zeolites 17 (1996) 1 - 230

oder bei: www.iza-sc.ethz.ch/IZA-SC/Atlas/AtlasHome.html

MICROMERITICS, ASAP 2010, Accelerated Surface Area and Porosimetry System, Operator's Manual, V3.00, September 1996

PEARSON, E. S.; HARTLEY, H. O.: Biometrika Tables for Statisticians II, London: Cambridge University Press, 1972

ROUQUÉROL, J.; AVNIR, D.; EVERETT, D. H.; HAYNES, M.; PERNICONE, N.; RAMSAY, J. D. F.; SING, K. S. W.; UNGER, K. K.: Recommendations for the Characterization of Porous Solids (Technical Report), Pure & Appl. Chem. **66** (1994) 8, 1739 - 1758

SAITO, A.; FOLEY, H. C.: Curvature and Parametric Sensitivity in Models for Adsorption in Micropores, Amer. Inst. chem. Eng. J. **37** (1991) 3, 429 - 436

SING, K. S. W.; EVERETT, D. H.; HAUL, R. A. W.; MOSCOU, L.; PIEROTTI, R. A.; ROUQUÉROL, J.; SIEMIENIEWSKA, T.: Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984), Pure & Appl. Chem. **57** (1985) 4, 603 - 619

SNEDECOR, G. W.; COCHRAN, W. G.: Statistical Methods, 8th ed., 7th printing, Ames, Iowa: Iowa State University Press, 1996

VAN DER VEEN, A. M. H.; NATER, D. A. G.: Sample Preparation from Bulk Samples: An Overview, Fuel Processing Technology **36** (1993) 1 - 7

Anhang

Einzelergebnisse der Laboratorien

Tabellen

Die Tabellen enthalten die Statistik für jedes Laboratorium

i	laufende Nummer
Labor	Labornummer
Ausreißer	'n X' gefundene Ausreißer (#n)
	durch den Grubbs-Test
	'!' bezeichnet das 1-%-Niveau (Daten entfernt)
	'?' bezeichnet das 5-%-Niveau (Daten nicht entfernt)
$\overline{\mathbf{x}}_{i}$	Mittelwert des Laboratoriums #i
S _i	Standardabweichung des Laboratoriums #i
CVi	Variationskoeffizient im Laboratorium #i
X _{ij}	Einzelmesswert im Laboratorium #i

Grafiken

Die Grafiken enthalten die einzelnen Messdaten (Punkte), die Labormittelwerte (Sterne) und Balken, die die Standardabweichung für jedes Labor kennzeichnen. Zusätzlich sind der zertifizierte Wert $\overline{\overline{x}}$ (Mittelwert der Labormittelwerte), die Standardabweichung des Mittelwertes der Labormittelwerte ($\pm s / \sqrt{n}$) als schraffierter Bereich, sowie die Standardabweichung der Labormittelwerte ($\pm s$) als Linien eingezeichnet. Eventuell vorliegende Ausreißer sind durch ein Kreuz (fett) an der Stelle des Labormittelwertes gekennzeichnet.

Tabelle A1: Auswertung der Adsorptionsisothermen von Stickstoff am Faujasite type zeolite bei der Temperatur des flüssigen Stickstoffs (77 K)

i	Labor	Ausreißer \overline{x}_i [m ² g ⁻¹]	s_i [m ² g ⁻¹]	CVi [%]	$x_{ij} \dots [m^2 g^{-1}]$		
1	1	607,262	7,207	1,187	613,5626 602,2421	615,8743 610,9063	597,6920 603,2920
2	3	608,998	6,160	1,012	611,1228 614,2404	613,4771 600,5450	612,7991 601,8026
3	5	587,996	10,98	1,868	593,7472 599,6434	575,0109 577,5625	594,0150
4	6	602,500	6,016	0,9985	592,2527 605,5648	600,2818 601,4074	609,3905 606,1023
6	9	618,794	2,962	0,4786	618,1153 615,4492	620,6321 618,0215	616,8199 623,7269
8	11	627,100	27,62	4,404	679,3205 619,7664	606,3367 606,6770	634,7000 615,7987
9	12	621,015	4,058	0,6535	618,5898 620,5726	614,7190 626,3010	623,7217 622,1830
10	14	609,747			609,7473		
12	19	613,830	4,594	0,7485	608,6152 621,9079	611,8878 615,7123	613,3899 611,4659
13	20	600,487	20,06	3,341	571,0032 607,2553	615,9286 607,3208	580,5623 620,8501
14	21	629,562	11,17	1,774	616,2705 638,5644	615,4395 632,5397	641,6488 632,9100
15	22	605,268	12,59	2,080	588,7006 609,8426	598,4816 622,2842	607,0315
16	30	605,163	5,944	0,9822	613,0685 597,4775 613,4692	605,5600 598,6149 604,3444	606,8174 601,9504

Spezifische Oberfläche (Langmuir-Modell), BAM-Software, [m²/g]

Abb. A1: Auswertung der Adsorptionsisothermen von Stickstoff am Faujasite type zeolite bei der Temperatur des flüssigen Stickstoffs (77 K)

Spezifische Oberfläche (Langmuir-Modell), BAM-Software, [m²/g]

Molecular Sieve 1.0 / nitrogen - liquid nitrogen

Tabelle A2: Auswertung der Adsorptionsisothermen von Stickstoff am Faujasite type zeolite bei der Temperatur des flüssigen Stickstoffs (77 K)

i	Labor	Ausreißer \overline{x}_i [m ² g ⁻¹]	$[m^2 g^{-1}]$	CVi [%]	x_{ij} $[m^2 g^{-1}]$		
1	1	607,303	7,207	1,187	613,6048 602,2835	615,9166 610,9483	597,7331 603,3335
2	3	606,755	6,289	1,037	611,1082 600,8640	613,4474 600,5439	612,7697 601,7973
3	5	588,036	10,98	1,868	593,7881 599,6846	575,0504 577,6022	594,0558
4	6	599,906	5,316	0,8862	592,1521 600,3213	595,2545 601,3044	604,3797 606,0223
6	9	616,102	5,896	0,9570	618,1353 615,4116	620,6501 609,6759	609,0515 623,6863
8	11	609,742	8,203	1,345	607,6778 611,7970	610,6487 595,1614	613,3462 619,8211
9	12	606,855	4,984	0,8213	607,1615 601,3756	600,1455 610,5776	611,9081 609,9638
10	14	609,219			609,2187		
12	19	610,523	4,520	0,7404	605,2227 618,4886	608,6489 612,1011	610,2861 608,3887
13	20	599,998	20,34	3,389	569,5592 606,9040	615,7790 606,8837	580,4687 620,3905
14	21	626,564	8,661	1,382	616,3128 627,7936	615,5756 632,9614	630,7104 636,0317
15	22	596,126	10,23	1,716	584,2649 598,3945	589,2499 611,0546	597,6676
16	30	604,556	5,824	0,9633	611,7827 597,2222 613,3551	604,3550 598,3923 603,1010	606,7130 601,5268

Spezifische Oberfläche (Langmuir-Modell), Micromeritics-Software, [m²/g]

Abb. A2: Auswertung der Adsorptionsisothermen von Stickstoff am Faujasite type zeolite bei der Temperatur des flüssigen Stickstoffs (77 K)

Spezifische Oberfläche (Langmuir-Modell), Micromeritics-Software, [m²/g]

Molecular Sieve 1.0 / nitrogen - liquid nitrogen

Tabelle A3: Auswertung der Adsorptionsisothermen von Stickstoff am Faujasite type zeolite bei der Temperatur des flüssigen Stickstoffs (77 K)

i	Labor	Ausreißer \overline{x}_i $[m^2 g^{-1}]$	s_i [m ² g ⁻¹]	CVi [%]	$x_{ij} \dots [m^2 g^{-1}]$		
1	1	620,667	7,734	1,246	626,0 614,6	628,6 628,0	611,0 615,8
2	3	616,406	2,215	0,3593	617,3436 618,9163 613,1655	618,0761 616,5364 614,3973	
3	5	610,750	14,92	2,442	597,5 628,2	599,2	618,1
4	6	652,757	6,213	0,9518	644,0804 657,4948 652,5784	646,4158 657,5708 658,3996	
6	9	625,943	3,134	0,5007	624,93 628,45	626,89 623,31	621,92 630,16
9	12	629,982	4,277	0,6789	624,2758 634,4261 634,8660	626,1967 629,3759 630,7536	
10	14	660,651			660,6505		
12	19	623,025	4,915	0,7889	617,6098 622,9760 625,6823	621,0331 631,2931 619,5527	
13	20	600,520	20,81	3,466	569,4583 580,4770 607,6836	615,7860 607,6527 622,0625	
14	21	630,162	11,44	1,815	616,27 638,79	615,53 632,73	641,66 635,99
15	22	605,080	12,61	2,084	588,4 609,6	598,4 622,1	606,9
16	30	605,063	5,867	0,9697	612,5890 607,4282 599,1898 613,3377	605,1973 597,1944 601,4693 604,0971	

Spezifische Oberfläche (Langmuir-Modell), Partner-Software, [m²/g]

Abb. A3: Auswertung der Adsorptionsisothermen von Stickstoff am Faujasite type zeolite bei der Temperatur des flüssigen Stickstoffs (77 K)

Spezifische Oberfläche (Langmuir-Modell), Partner-Software, [m²/g]

Molecular Sieve 1.0 / nitrogen - liquid nitrogen

Tabelle A4: Auswertung der Adsorptionsisothermen von Stickstoff am Faujasite type zeolite bei der Temperatur des flüssigen Stickstoffs (77 K)

i	Labor	Ausreißer \overline{x}_i [nm]	s _i [nm]	CVi [%]	x_{ij} [nm]	
2	3	0,570052	0,0007723	0,1355	0,5701 0,57023 0,56917	0,56923 0,57034 0,57124
3	5	0,596818	0,004445	0,7448	0,59336 0,59336 0,60026	0,60287 0,59424
4	6	0,584942	0,002796	0,4781	0,5836 0,58472 0,58293	0,58564 0,5826 0,59016
9	12	0,585347	0,007238	1,237	0,59495 0,59019 0,58502	0,58769 0,57551 0,57872
10	14	0,615470			0,61547	
11	17	0,609442	0,01419	2,329	0,62105 0,61965 0,60278	0,62243 0,58645 0,60429
12	19	0,572912	0,001640	0,2863	0,57155 0,57576 0,57236	0,57367 0,57283 0,57130
13	20	0,566335	0,005589	0,9869	0,55616 0,57264 0,56656	0,56973 0,56727 0,56565
14	21	0,585112	0,02665	4,555	0,57557 0,57694 0,59329	0,56503 0,56467 0,63517
15	22	0,567836	0,02131	3,753	0,57754 0,54515 0,59099	0,54515 0,58035
16	30	0,568029	0,005350	0,9419	0,56145 0,57451 0,5727 0,56876	0,56539 0,57044 0,5597 0,57128

Porenweite nach dem Saito-Foley-Modell mit Aluminosilicate-Parametern und Micromeritic-Software, [nm]

Abb. A4: Auswertung der Adsorptionsisothermen von Stickstoff am Faujasite type zeolite bei der Temperatur des flüssigen Stickstoffs (77 K)

Porenweite nach dem Saito-Foley-Modell mit Aluminosilicate-Parametern und Micromeritic-Software, [nm]

Molecular Sieve 1.0 / nitrogen - liquid nitrogen

Tabelle A5: Auswertung der Adsorptionsisothermen von Stickstoff am Faujasite type zeolite bei der Temperatur des flüssigen Stickstoffs (77 K)

i	Labor	Ausreißer [¯x _i nm]	s _i [nm]	CVi [8]	x_{ij} [nm]		
2	3	0,845	817	0,001243	0,1470	0,8454 0,8462	0,8452 0,8441	0,8462 0,8478
3	5	0,887	600	0,005214	0,5874	0,8818 0,8820	0,8919 0,8910	0,8913
4	6	0,845	700	0,003607	0,4265	0,8437 0,8447	0,8489 0,8419	0,8437 0,8513
9	12	0,870	133	0,01071	1,230	0,8838 0,8554	0,8732 0,8719	0,8769 0,8596
10	14	0,918	100			0,9181		
11	17	0,906	800	0,02217	2,445	0,9255 0,8713	0,9293 0,8953	0,9195 0,8999
12	19	0,853	100	0,009693	1,136	0,8480 0,8500	0,8514 0,8484	0,8727 0,8481
13	20	0,839	367	0,009369	1,116	0,8225 0,8408	0,8456 0,8396	0,8499 0,8378
14	21	0,863	467	0,05249	6,079	0,8202 0,8706	0,8199 0,8913	0,8268 0,9520
15	22	0,841	780	0,02918	3,467	0,8594 0,8562	0,8105 0,8723	0,8105
16	30	0,842	863	0,008735	1,036	0,8319 0,8469 0,8436	0,8390 0,8490 0,8482	0,8547 0,8296

Porenweite nach dem Saito-Foley-Modell mit Zeolith-Parametern und BAM-Software, [nm]

Abb. A5: Auswertung der Adsorptionsisothermen von Stickstoff am Faujasite type zeolite bei der Temperatur des flüssigen Stickstoffs (77 K)

Porenweite nach dem Saito-Foley-Modell mit Zeolith-Parametern und BAM-Software, [nm]

Molecular Sieve 1.0 / nitrogen - liquid nitrogen

Tabelle A6: Auswertung der Adsorptionsisothermen von Stickstoff am Faujasite type zeolite bei der Temperatur des flüssigen Stickstoffs (77 K)

i	Labor	Ausreißer	$\overline{\mathrm{x}}_{\mathrm{i}}$ [nm]	s _i [nm]	CVi [%]	x_{ij} [nm]		
2	3	0,8	43655	0,001301	0,1542	0,84347 0,84338	0,84367 0,84156	0,84432 0,84553
3	5	0,8	85464	0,005377	0,6073	0,87965 0,87982	0,89125 0,88877	0,88783
4	6	0,8	45733	0,003521	0,4163	0,844 0,8448	0,8488 0,8419	0,8437 0,8512
9	12	0,8	67185	0,01083	1,248	0,88101 0,85197	0,87034 0,86890	0,87394 0,85695
10	14	0,9	16040			0,91604		
11	17	0,9	04560	0,02284	2,525	0,92315 0,86705	0,9281 0,89394	0,9168 0,89832
12	19	0,8	48358	0,002861	0,3372	0,8461 0,8482	0,8495 0,84649	0,85354 0,84632
13	20	0,8	37790	0,009338	1,115	0,8210 0,83928	0,84395 0,83806	0,84833 0,83612
14	21	0,8	65415	0,04643	5,365	0,82266 0,83901	0,83901 0,88368	0,85804 0,95009
15	22	0,8	39096	0,02810	3,349	0,85696 0,85263	0,80893 0,86803	0,80893
16	30	0,8	41269	0,008734	1,038	0,83024 0,8454 0,84205	0,83736 0,84747 0,84644	0,85311 0,82808

Porenweite nach dem Saito-Foley-Modell mit Zeolith-Parametern und Micromeritics-Software, [nm]

Abb. A6: Auswertung der Adsorptionsisothermen von Stickstoff am Faujasite type zeolite bei der Temperatur des flüssigen Stickstoffs (77 K)

Porenweite nach dem Saito-Foley-Modell mit Zeolith-Parametern und Micromeritics-Software, [nm]

Molecular Sieve 1.0 / nitrogen - liquid nitrogen

Tabelle A7: Auswertung der Adsorptionsisothermen von Stickstoff am Faujasite type zeolite bei der Temperatur des flüssigen Stickstoffs (77 K)

i	Labor	Ausreißer \overline{x}_{i} [nm]	s _i [nm]	CVi [%]	x_{ij} [nm]	
2	3	0,693320	0,0008944	0,1290	0,69317 0,69354 0,69218	0,69262 0,69367 0,69474
3	5	0,726908	0,005284	0,7269	0,72120 0,73219 0,72864	0,73112 0,72139
4	6	0,710918	0,003277	0,4610	0,70914 0,71007 0,70784	0,71290 0,70894 0,71662
9	12	0,711755	0,008759	1,231	0,72295 0,71777 0,71215	0,71446 0,69955 0,70365
10	14	0,748290			0,74829	
11	17	0,740657	0,01737	2,346	0,75507 0,75231 0,73253	0,75687 0,71232 0,73484
12	19	0,696795	0,002022	0,2902	0,69514 0,70038 0,69576	0,69771 0,69670 0,69508
13	20	0,688585	0,006762	0,9820	0,67624 0,69597 0,68906	0,69311 0,68926 0,68787
14	21	0,709893	0,03418	4,815	0,68524 0,70261 0,72238	0,68780 0,68780 0,77353
15	22	0,690206	0,02413	3,497	0,70326 0,66440 0,71597	0,66440 0,70300
16	30	0,690633	0,006636	0,9609	0,68237 0,69934 0,69588 0,69109	0,68774 0,69363 0,68045 0,69456

Porenweite nach dem Saito-Foley-Modell mit de-la-Puente-Parametern und Micromeritics-Software, [nm]

Abb. A7: Auswertung der Adsorptionsisothermen von Stickstoff am Faujasite type zeolite bei der Temperatur des flüssigen Stickstoffs (77 K)

Porenweite nach dem Saito-Foley-Modell mit de-la-Puente-Parametern und Micromeritics-Software, [nm]

Molecular Sieve 1.0 / nitrogen - liquid nitrogen

Tabelle A8: Auswertung der Adsorptionsisothermen von Stickstoff am Faujasite type zeolite bei der Temperatur des flüssigen Stickstoffs (77 K)

i	Labor	Ausreißer \overline{x}_{i}	Si	cVi	$\mathbf{x}_{\texttt{ij}}$.		
		$[cm^3 g^{-1}]$] [cm ³ g ⁻¹]	[%]	$[cm^{3} g^{-1}]$]	
1	1	0,216967	0,002699	1,244	0,2189 0,2149	0,2198 0,2194	0,2136 0,2152
2	3	0,217683	0,001206	0,5539	0,2185 0,2174	0,2185 0,2164	0,2191 0,2162
3	5	0,211460	0,004097	1,937	0,2133 0,2153	0,2067 0,2074	0,2146
4	б	0,214800	0,002141	0,9968	0,2114 0,2155	0,2134 0,2147	0,2167 0,2171
6	9	0,220333	0,001462	0,6637	0,2206 0,2205	0,2213 0,2189	0,2184 0,2223
8	11	0,217250	0,001700	0,7826	0,2160 0,2183	0,2171 0,2146	0,2184 0,2191
9	12	0,220367	0,001369	0,6213	0,2194 0,2205	0,2184 0,2224	0,2210 0,2205
10	14	0,217600			0,2176		
12	19	0,218933	0,001700	0,7766	0,2170 0,2219	0,2183 0,2197	0,2187 0,2180
13	20	0,214067	0,007419	3,466	0,2031 0,2164	0,2198 0,2164	0,2069 0,2218
14	21	0,224050	0,003991	1,781	0,2190 0,2269	0,2191 0,2252	0,2281 0,2260
15	22	0,215420	0,003986	1,851	0,2106 0,2169	0,2128 0,2210	0,2158
16	30	0,215813	0,002033	0,9420	0,2186 0,2132 0,2185	0,2159 0,2135 0,2156	0,2165 0,2147

spezifisches Mikroporenvolumen, BAM-Software, [cm³/g]

Abb. A8: Auswertung der Adsorptionsisothermen von Stickstoff am Faujasite type zeolite bei der Temperatur des flüssigen Stickstoffs (77 K)

spezifisches Mikroporenvolumen, BAM-Software, [cm³/g]

Molecular Sieve 1.0 / nitrogen - liquid nitrogen

Tabelle A9: Auswertung der Adsorptionsisothermen von Stickstoff am Faujasite type zeolite bei der Temperatur des flüssigen Stickstoffs (77 K)

i	Labor	Ausreißer \overline{x}_i [cm ³ g ⁻¹	s_i [cm ³ g ⁻¹]	CVi [%]	x_{ij} [cm ³ g ⁻	•••• ••1]	
1	1	0,216890	0,002457	1,133	0,219184 0,215239	0,220109 0,217480	0,213777 0,215549
2	3	0,216478	0,002193	1,013	0,217937 0,214489	0,218833 0,214337	0,218608 0,214662
3	5	0,209802	0,003961	1,888	0,211876 0,213851	0,205090 0,206025	0,212167
4	6	0,214516	0,001890	0,8811	0,211741 0,214693	0,212880 0,214991	0,216103 0,216686
6	9	0,219525	0,002122	0,9667	0,220249 0,219228	0,221208 0,217171	0,217047 0,222244
8	11	0,214892	0,003157	1,469	0,212236 0,216011	0,216042 0,210365	0,215392 0,219305
9	12	0,216710	0,001636	0,7548	0,216949 0,214959	0,214468 0,217724	0,218555 0,217602
10	14	0,216795			0,216795		
12	19	0,218704	0,001627	0,7438	0,216642 0,221426	0,219029 0,219179	0,218266 0,217680
13	20	0,214344	0,007367	3,437	0,203460 0,216698	0,220041 0,216776	0,207165 0,221924
14	21	0,222996	0,003092	1,387	0,219220 0,223881	0,218947 0,225359	0,224880 0,225687
15	22	0,212917	0,003534	1,660	0,208925 0,213697	0,210424 0,218107	0,213430
16	30	0,216026	0,001972	0,9129	0,218582 0,213596 0,218911	0,215949 0,213862 0,215561	0,216741 0,215003

spezifisches Mikroporenvolumen, Micromeritics-Software, [cm³/g]

Abb. A9: Auswertung der Adsorptionsisothermen von Stickstoff am Faujasite type zeolite bei der Temperatur des flüssigen Stickstoffs (77 K)

spezifisches Mikroporenvolumen, Micromeritics-Software, [cm³/g]

Tabelle A10: Auswertung der Adsorptionsisothermen von Stickstoff am Faujasite type zeolite bei der Temperatur des flüssigen Stickstoffs (77 K)

i	Labor	Ausreißer \overline{x}_i [cm ³ g ⁻¹	s_i] [cm ³ g ⁻¹]	CVi [%]	x_{ij} [cm ³ g ⁻¹]		
1	1	0,217083	0,002653	1,222	0,2190 0,2151	0,2199 0,2194	0,2137 0,2154
2	3	0,229259	0,001262	0,5504	0,230412 0,229396	0,229556 0,227784	0,230676 0,227729
4	6	0,230195	0,002168	0,9417	0,227139 0,231778	0,228008 0,230160	0,231895 0,232189
9	12	0,234159	0,001475	0,6299	0,233517 0,234488	0,231799 0,235999	0,235302 0,233848
10	14	0,231192			0,231192		
12	19	0,222010	0,001107	0,4986	0,220814 0,221426	0,222044 0,223910	0,222538 0,221328
13	20	0,220688	0,009763	4,424	0,215466 0,216878	0,220586 0,228757	0,207637 0,234806
14	21	0,224167	0,004138	1,846	0,2192 0,2275	0,2189 0,2253	0,2285 0,2256
15	22	0,216400	0,004179	1,931	0,2110 0,2178	0,2140 0,2221	0,2171
16	30	0,216363	0,002257	1,043	0,218582 0,213596 0,218568	0,216293 0,213862 0,215561	0,219441 0,215004

spezifisches Mikroporenvolumen, Partner-Software, [cm³/g]

Abb. A10: Auswertung der Adsorptionsisothermen von Stickstoff am Faujasite type zeolite bei der Temperatur des flüssigen Stickstoffs (77 K)

spezifisches Mikroporenvolumen, Partner-Software, [cm³/g]

