Federal Institute for Materials Research and Testing (BAM)

in Co-operation with the

Committee of Chemists of GDMB
Gesellschaft für Bergbau, Metallurgie, Rohstoff- und Umwelttechnik

The Certification of Mass Fractions of AI, B, Ca, Cr, Cu, $\mathrm{Fe}, \mathrm{Mg}, \mathrm{Mn}, \mathrm{Na}, \mathrm{Ni}, \mathrm{Ti}, \mathrm{V}, \mathrm{Zr}$; $\mathrm{C}_{\text {(total), }} \mathrm{C}_{\text {(free) }}$ and O in Silicon Carbide Powder (green micro F800)

BAM-S003

R. Matschat, A. Dette

Federal Institute for Materials Research and Testing (BAM)
Richard-Willstätter-Str. 11
12489 Berlin
Germany

Final certification report

Abstract

This report describes the preparation and certification of BAM reference material BAM-S003, a silicon carbide powder (green micro F 800) with certified impurity contents carried out in cooperation with the Committee of Chemists of GDMB. The certified mass fractions and additional determined data are listed below.

Element/ Constituent	Certified Values		
	Symbols	Mass fraction ${ }^{1)}$ in $\mathrm{mg} / \mathrm{kg}$	Uncertainty ${ }^{2)}$ in $\mathrm{mg} / \mathrm{kg}$
Aluminium	AI	372	20
Boron	B	63	7
Calcium	Ca	29.4	1.8
Chromium	Cr	3.5	0.4
Copper	Cu	1.5	0.4
Iron	Fe	149	10
Magnesium	Mg	6.3	0.6
Manganese	Mn	1.44	0.17
Sodium	Na	17.7	0.8
Nickel	Ni	32.9	2.7
Titanium	Ti	79	4
Vanadium	V	41.4	2.8
Zirconium	Zr	25.2	2.0
Free Carbon ${ }^{3)}$	$\mathrm{C}_{\text {free }}$	493	79
Oxygen ${ }^{5}$	0	910	35
		$\text { Mass fraction }{ }^{11}$ $\text { in } \%$	$\begin{aligned} & \text { Uncertainty }^{2)} \\ & \text { in \% } \end{aligned}$
Total Carbon ${ }^{4)}$	$\mathrm{C}_{\text {total }}$	29.89	0.07

1) The certified values are the means of 4-22 series of results (depending on the parameter) obtained by different laboratories. 2 up to 8 different analytical methods were used for the measurement of one parameter. The calibrations of the methods applied for determination of element mass fractions were carried out by using pure substances of definite stoichiometry or by using solutions prepared from them, thus achieving traceability to SI unit.
2) The certified uncertainty is the expanded uncertainty estimated in accordance with the Guide to the Expression of Uncertainty in Measurements (GUM) with a coverage factor $k=2$. It includes contributions from sample inhomogeneity.
3) The mass fraction of carbon free is a method-depending value. It was determined by two different methods and is only related to the application of these methods, which are described as "Method M1" and "Method M2" respectively, attached to this certification report (see appendices 1 and 2).
4) The recommended "Method M3" described in attachment (appendix 3) can be used for the determination of mass fraction of carbon total.
5) The recommended "Method M4" described in attachment (appendix 4) can be used for the determination of mass fraction of oxygen.

Sample description

The certified reference material BAM-S003 is a silicon carbide powder (type green micro F800). The material is supplied in glass bottles containing 50 g each.

Indicative values

Not certified indicative values were determined in the interlaboratory comparison by participating laboratories.

Parameter	Indicative Values	
	Mass fraction ${ }^{1)}$ in $\mathrm{mg} / \mathrm{kg}$	$\begin{gathered} \text { Uncertainty }{ }^{2)} \\ \text { in } \mathrm{mg} / \mathrm{kg} \\ \hline \end{gathered}$
Nitrogen	93	22
Silicon dioxide free	600	148
Silicon free	481	223
1) The indicative values are the means of 6-11 series of results (depending on the parameter) obtained by different laboratories. 1 up to 4 different analytical methods were used for the measurement of one parameter. The methods applied for determination of mass fractions were not always carried out by using pure substances of definite stoichiometry or by using solutions prepared from them, thus was not achieved traceability to SI units. 2) The uncertainty is the expanded uncertainty estimated in accordance with the Guide to the Expression of Uncertainty in Measurements (GUM) with a coverage factor $k=2$.		

Additional Material Data
Additional material properties were determined by using one method, and can be used as informative values, only.

Parameter		Additional Material Data	
		Mass fraction in \%	Uncertainty
Phases:	SiC-6H	$89.2{ }^{11}$	0.2^{27}
	SiC-15R	6.1^{11}	0.2^{2}
	SiC-4H	$4.7{ }^{11}$	$0.2^{2)}$
Parameters of particle size		Particle size in $\mu \mathrm{m}$	
	D_{10}	$5.55{ }^{3}$	
	D_{50}	10.18^{3}	
	D_{90}	$16.69{ }^{3}$	
1) The measurements were carried out by X-ray powder diffraction using Rietveld method for evaluation. 2) The calculation of the standard uncertainty is based on a raw estimation from the evaluation of the Rietveld method. 3) The particle size distribution was determined by laser light diffraction method.			

Contents

0	Abstract
1	Introduction
1.1	Scope
1.2	Certification procedure
2	Participating laboratories
2.1	Allocation and preparation of the material
2.2	Homogeneity testing
2.3	Certification analysis (certified and indicative values)
2.4	Determination of additional material data
2.5	Compilation and revision of prescribed and recommended analytical methods
3	Abbreviations used
4	Origin and homogeneity investigation of the material
4.1	Starting material
4.2	Homogeneity investigations and testing
4.2.1	Distribution of sub-samples; homogenized sample
4.2.2	Homogeneity investigation for metallic analytes (except Na)
4.2.3	Homogeneity investigation for B and Na
4.2.4	Homogeneity investigation for non-metallic analytes
4.2.5	Conclusion
5	Time stability of the material
6	Analytical methods
6.1	Analytical methods used for certification (certified and informative values)
6.2	Methods used for the determination of additional material data
6.3	Methods used for homogeneity testing
6.4	Method used for time stability checking
7	Results and discussion
7.1	Presentation of the data and statistical evaluation
7.2	Technical discussion
7.2.1	Metallic analytes (additionally boron)
7.2.1.1	Aluminium
7.2.1.2	Boron
7.2.1.3	Calcium
7.2.1.4	Chromium
7.2.1.5	Copper
7.2.1.6	Iron
7.2.1.7	Magnesium
7.2.1.8	Manganese
7.2.1.9	Sodium
7.2.1.10	Nickel
7.2.1.11	Titanium
7.2.1.12	Vanadium
7.2.1.13	Zirconium
7.2.2	Non-metallic certified analytes
7.2.2.1	Total carbon
7.2.2.2	Free carbon
7.2.2.3	Oxygen
7.2.3	Non-metallic not certified analytes (indicative values)
7.2.3.1	Nitrogen
7.2.3.2	Free silicon

7.2.3.3 Free silicon dioxide

7.3 Summary of statistical evaluation
7.3.1 Metallic analytes
7.3.2 Non-metallic certified analytes
7.3.3 Non-metallic indicative analytes
8. Calculation of certified and indicative values and their uncertainties
8.1 Mass fractions
8.2 Uncertainties
8.3 Certified values
8.4 Indicative values
8.5 Additional material data
9. Instructions for use
9.1 Area of application
9.2 Recommendations for correct sampling and sample preparation
9.3 Recommendations for correct storage
9.4 Expiration of certification
9.5 Safety guidelines

10 References
11 Regulatory information
12...........Appendices

- Appendix 1: Method M1: Coulometric determination of free carbon ($\mathrm{C}_{\text {free }}$) in silicon carbide after wet-chemical oxidation with hot chromic-sulfuric acid
- Appendix 2: Method M2: Coulometric determination of free carbon content ($\mathrm{C}_{\text {free }}$) in silicon carbide comprising weighing-back the sample boat
- Appendix 3: Method M3: Proposed method for determination of total carbon mass fraction in silicon carbide powder
- Appendix 4: Method M4: Proposed method for the determination of oxygen and nitrogen mass fraction in silicon carbide powder
- Appendix 5: Homogeneity investigations of the CRM-candidate material „Silicon Carbide Powder 1" (SiC green micro F800)
- Appendix 6: Compilation of sample preparation procedures, calibrations and methods for final determination used in interlaboratory comparison for certification of CRM BAM-S003
- Appendix 7: Statistical evaluation of all results of interlaboratory comparison for certification of CRM BAM-S003
- Appendix 8: Additional information to the Grubbs tests carried out for the interlaboratory comparison for the certification of CRM BAM-S003

1 Introduction
 1.1 Scope

Silicon carbide is a material of extreme hardness and therefore very wear-resistant. This is because of the tight covalent bond of Si and C atoms, which is also the reason for the high thermal conductivity, high elasticity modulus, the low thermal expansion and the very high chemical durability. The high oxidation resistance is based on thin layers of oxides which are formed in some seconds on fresh surfaces after breaking or forming the material.

In the early field of application, SiC was used as abrading medium. Today SiC is of additional wide technical importance because of its outstanding properties, such as hardness, thermal conductivity, refractoriness and chemical durability as well as special semiconductor properties useful for opto- and micro-electronic applications.

Silicon carbide is normally produced from quartz sand and coke as starting materials. At temperatures above $2000^{\circ} \mathrm{C}$ silicon dioxide and carbon are chemically converted to SiC and carbon monoxide.

The world wide production of SiC at present is about 900,000 tons per year (t/a). The larger part (ca. 660,000 t/a) is used in metallurgy sector as aggregate, the other part (ca. 240,000 t / a) is the so-called crystalline SiC . It is used as abrading medium (ca. 96,000 t/a), as refractory ceramics (ca. $96,000 \mathrm{t} / \mathrm{a}$) or for other applications (ca. $48.000 \mathrm{t} / \mathrm{a}$), such as for formed components or opto- or micro-electronics components.

The purity of the material is of high importance for its practical value, especially in the high tech applications, such as power current and high frequency technology or opto- and micro electronics. This is the reason why so many traces in the material have to be routinely checked by chemical analysis and consequently have to be certified in a certified reference material for the chemical composition of silicon carbide. But also the fraction of silicon carbide itself is of high importance for the properties, the practical value and the price of the material. It is determined by measuring the total as well as the free carbon content. Another important information is the oxygen content, indicating the aging process of the material. Therefore all these parameters were certified: The prominent metallic traces (additionally boron), the content of total and of free carbon and the oxygen content. Besides these the following contents are of interest, which therefore have been determined as indicative values: Nitrogen, free silicon dioxide and free silicon. The eminent importance of the certified carbon values are additionally based on the fact, that this certified reference material can be used to validate methods and results of carbon determination in other refractory materials with high carbon content.

1.2 Certification procedure

The silicon carbide powder material (quality green micro F 800) was taken from the customary production line of the producer and was bottled into 320 bottles each containing 50 g of the material. From the total number 20 bottles were selected. From each of these bottles 4 vials were filled and sent to the laboratories by which the homogeneity investigations were carried out. After positive conclusion of all homogeneity testing and of investigation on stability one sample bottle was distributed to each of the 29 international participants of the interlaboratory comparison for certification. The participants came from 8 different countries. Difficulties to determine some of the analytes were discussed among the members of the working group "Special Materials" of GDMB at its biannual sessions. In the end for the critical analytes, such as $\mathrm{C}_{\text {total }}$ as well as O and N , analytical methods were specified and proposed or (in case of $\mathrm{C}_{\text {free }}$) prescribed to use. For the uncritical analytes a free selection of analytical methods was admitted. For the final certification, each laboratory carried out 6 independent determinations for the investigated analytes. The statistical evaluation of the results of interlaboratory comparison included some statistical tests.

Indicated outliers were discussed at the sessions of GDMB. The participants who had delivered these values were informed. After removal of all relevant outliers the mean values of the interlaboratory comparison were taken as the certified mass fractions. The certified uncertainties were calculated by taking into account the contributions from interlaboratory comparison and from inhomogeneity of the material.

2 Participating laboratories

2.1 Allocation and preparation of the material

- The material was produced by Wacker Ceramics, Kempten, Germany, and bought from there by Bundesanstalt für Materialforschung und -prüfung (BAM) Berlin (Germany)
- The material was filled into sample bottles by BAM,
- Sub-samples for homogeneity testing were bottled and a highly homogenized sample was produced by BAM

2.2 Homogeneity testing

- The analytical investigations for the homogeneity testing of $\mathrm{Al}, \mathrm{Ca}, \mathrm{Cr}, \mathrm{Cu}, \mathrm{Fe}, \mathrm{Mg}, \mathrm{Mn}$, $\mathrm{Ni}, \mathrm{Ti}, \mathrm{V}, \mathrm{Zr}$, Crree, O, Ctotal, N and SiO_{2} were carried out by Wacker Ceramics, Kempten, Germany.
- The analytical investigations for the homogeneity testing of B and Na were carried out by H. C. Starck GmbH \& Co. KG, Goslar, Germany.
- All statistical evaluations for homogeneity testing were carried out by BAM.

2.3 Certification analysis (certified and indicative values)

To achieve a high international acceptance prominent laboratories located world wide were asked to participate. These laboratories were either involved in daily SiC analysis or had well known ability to analyze difficult materials by adequate analytical methods. The 29 participants of the interlaboratory comparison for certification are listed alphabetically in Tab. 1.

[^0]```
ESK-SiC GmbH, Frechen (Germany)
Forschungszentrum Jülich GmbH, Jülich (Germany)
H.C. Starck Ceramics GmbH & Co. KG; Selb (Germany)
H.C. Starck GmbH & Co. KG; Goslar (Germany)
H.C. Starck GmbH & Co. KG; Laufenburg (Germany)
Institut für Festkörper und Werkstoffforschung, Dresden (Germany)
Japan Fine Ceramics Center, Atsuta-ku Nagoya (Japan)
Johannes Gutenberg Universität, Institut für Kernchemie, Mainz (Germany)
Jožef Stefan Institute, Ljubljana (Slovenia)
Max-Plank-Institut für Metallforschung, Stuttgart (Germany)
Molab AS, Mo I Rana (Norway)
NGK Insulators, LTD., Chemical analysis materials research lab., Nagayo (Japan)
OSRAM GmbH, München (Germany)
Plansee AG, Reutte (Austria)
Saint Gobain Ceramic Materials AS, Lillesand (Norway)
Saint Gobain Industrial Ceramics and Plastics, Northboro (USA)
Saint Gobain Industriekeramik, Geschäftsbereich Feuerfesttechnik, Rödental (Germany)
Schunk Kohlenstofftechnik GmbH, Heuchelheim (Germany)
SGL Carbon GmbH, Bonn (Germany)
SGL Carbon GmbH, Meitlingen (Germany)
W.C. Heraeus GmbH, Hanau (Germany)
Wacker Ceramics, Kempten (Germany)
Zhuzhou Cemented Carbide Group Corp., LTD., Zhuzhou, Hunan (PR China)
```


### 2.4 Determination of additional material data

- The determination of phases was carried out by BAM, laboratory "X-ray structure and phase analysis".
- The particle size distribution was determined by BAM, division "Materials Technology of Advanced Ceramics and Composites".


### 2.5 Compilation and revision of the prescribed and recommended analytical methods

- Method M1 "Coulometric determination of free carbon ( $\mathrm{C}_{\text {free }}$ ) in silicon carbide after wet-chemical oxidation with hot chromic-sulfuric acid": According to Dr. Jürgen Haßler, Wacker-Chemie GmbH, Max-Schaidhauf-Str. 25 D-87437 Kempten, Germany.
- Method M2 "Coulometric determination of free carbon content ( $\mathrm{C}_{\text {free }}$ ) in silicon carbide comprising weighing-back the sample boat": According to Dr. Jürgen Haßler, WackerChemie GmbH, Max-Schaidhauf-Str. 25 D-87437 Kempten, Germany
- Method M3 "Proposal for determination of total carbon mass fraction in silicon carbide powder ": Prepared by Albrecht Meyer, Max-Planck-Institut für Metallforschung, Heisenbergstraße 3, D-70569 Stuttgart, Germany and revised by Dr. Wolfgang Gruner, Leibniz-Institut für Festkörper- u. Werkstoffforschung, Postfach 270116, D01171 Dresden, Germany.
- Method M4 "Proposal for the determination of oxygen and nitrogen mass fraction in silicon carbide powder": According to Dr. Wolfgang Gruner, Leibniz-Institut für Festkörper- u. Werkstoffforschung, Postfach 270116, D-01171 Dresden, Germany


## 3 Abbreviations used

Tab. 2: List of abbreviations

| CGHE/comb.-IR | Carrier gas hot extraction/combustion method with infrared detection |
| :--- | :--- |
| Comb./coul. | Combustion of free carbon followed by coulometric determination |
| Comb.-IR | Combustion method with infrared detection |
| DCarc-OES | Direct current arc optical emission spectrometry |
| ET AAS | Atomic absorption spectrometry with electrothermal atomization |
| ETV-ICP OES | Inductively coupled plasma optical emission spectrometry with electrothermal vaporisation |
| F AAS | Flame atomic absorption spectrometry |
| F AES | Flame atomic emission spectrometry |
| GRAV | Gravimetry |
| ICP OES | Inductively coupled plasma optical emission spectrometry |
| ICP-MS | Inductively coupled plasma mass spectrometry |
| INAA | Instrumental neutron activation analysis |
| K K-INAA | K K Instrumental neutron activation analysis |
| MAS | Molecular absorption spectrometry |
| Method M1 | Coulometric determination of free carbon after wet chemical oxidation with hot chromic |
| Method M2 | sulfuric acid, (described in APPENDIX 1) |
| Combustion of free carbon followed by coulometric determination comprising weighing |  |
| SD | back the sample boat, (described in APPENDIX 2) |
| SS ET AAS | Standard deviation |
| TITR | Solid sampling electrothermal atomic absorption spectrometry |
| Vol. | Titrimetry |

## 4 Origin and homogeneity investigation of the material <br> 4.1 Starting material

The silicon carbide powder material (quality green micro F 800 ) was taken from the customary production line of the producer and was bottled into 320 bottles each containing 50 g of the material with the same lot number that has been produced under the same working conditions.

### 4.2 Homogeneity investigations and testing (FOR DETAILS SEE APPENDIX 5) 4.2.1 Distribution of sub-samples; homogenized sample

For the homogeneity testing 20 bottles were representatively taken from the totality of 320 bottles by a combination of random access and systematic selection. Each bottle contained 50 g of candidate material. From each of the $\mathrm{N}=20$ bottles four appropriate sample masses were filled into vials ("larger sub-samples") with masses of the taken material depending on the needs of the corresponding methods used for the homogeneity testing of different analytes. The vials were distributed to the laboratories, where the measurements for homogeneity testing were carried out.
For comparison a thoroughly homogenized sample was produced. For this purpose -20 g of the material were highly homogenized in the "Mixer/Mill" (Spex. Ind., USA) for 15 min . ( $3 \times 5 \mathrm{~min}$.) using polypropylene vessels and balls.
Partial masses of this sample were distributed to the laboratories, in which the measurements for homogeneity testing were carried out.

### 4.2.2 Homogeneity investigations for the metallic traces (excluding Na )

The measurements were carried out by using an ICP OES spectrometer "IRIS-AP" (Thermo Elemental) combined with electrothermal evaporation (ETV) for the analysis of sub-samples. In house carbide powders with known trace elemental contents and in some cases aliquots of calibration solutions were used for calibration. Resulting lack of trueness of results or of metrological traceability are not relevant, because a high precision is the only necessity in case of homogeneity investigation.

A real problem was the small sub-sample mass used with ETV ICP OES. A sub-sample mass of about 2 mg only could be applied. This is much less than normally used in wet chemical analysis and is not very representative for the entire sample. On the other hand it is possible to summarize some measurements to one result, thus summarizing the sub-sample mass to a virtual value representing a higher sub-sample mass. This procedure was followed, though more practical work is involved for measurements.
For the elements $\mathrm{Al}, \mathrm{Ca}, \mathrm{Fe}, \mathrm{Mg}, \mathrm{Ni}, \mathrm{Ti}$ and Zr four series of measurements were carried out at different days and seven series of measurements for the elements $\mathrm{Cr}, \mathrm{Cu}$ and V . Because of the very similar distribution of Cr and Mn in the samples, as known from former studies, Mn was not measured and the results for Cr in the homogeneity test were applied to Mn , too. The results of the measurements and the homogeneity testing are listed and explained in APPENDIX 5. They are classified by elements, each element having 4 pages in the report.
Below the results of measurement data and their summary two tables are arranged for homogeneity testing. One homogeneity test (Anova, F-test) was made for comparing variances "between the bottles" and "within the bottles". By the other testing (F-test) the standard deviation within the samples was compared with the standard deviation of the homogeneous sample. All calculations and test results are explained in APPENDIX 5.
It could be concluded from the F-tests ("between" and "within") that for all 10 investigated elements no significant contribution by an inhomogeneity "between the bottles" could be found. A significant inhomogeneity contribution "within the bottles" was only found for the elements $\mathrm{Cu}, \mathrm{Fe}$ and Zr . The material can be classified as sufficiently homogeneous concerning the distribution of the 10 metallic analytes investigated.

### 4.2.3 Homogeneity investigations for B and Na

Both analytes could not be determined by ETV ICP OES precisely enough. Therefore other methods were used. For the determination of $B$ sub-samples of 0.5 g were weighed into the PTFE-liner of the pressure digestion system DAB II (Berghof, Germany) and digested after adding of $\mathrm{HF}(73 \%)$ and $\mathrm{HNO}_{3}$ ( $100 \%$, fuming) at $250{ }^{\circ} \mathrm{C}$ for 8 hours. The boron concentrations in the digested and diluted samples were measured by ICP OES ("Ultrace", Jobin Yvon). The calibration solutions were matrix adapted for acids and the concentration of Si. The values used for the homogeneity investigation are the mean values of two measurements of the same digestion solution at different days.
For the determination of Na 0.5 mg sub-samples were analysed directly by solid sampling AAS (SS ET AAS) using the spectrometer "AAS SEA solid" (Analytik Jena AG, Jena, Germany). The calibration was done by using aliquots of calibration solutions.
It was not necessary to summarize measurements from different sub-samples, as done for metallic elements. Apart from this, the structure for the documents containing the evaluation of the measurements is similar as for the metallic elements. All values and evaluations are listed and explained in APPENDIX 5. For both analytes ( B and Na ) no significant inhomogeneities were found within the bottles. - The same holds true for the homogeneity of the distribution of Na between the bottles, whereas for B a significant inhomogeneity between the bottles was found.

### 4.2.4 Homogeneity investigations of non-metallic analytes

Different methods were applied for the determination of different analytes.

The content of $\mathrm{C}_{\text {total }}$ was determined by two different methods. One consisted in the combustion of sub-samples of $20-25 \mathrm{mg}$ in a high frequency furnace WC200 (LECO) in an oxygen stream. The generated $\mathrm{CO}_{2}$ gas was collected in a C-trap and was measured by an infrared measuring cell after release. The other method consisted in the coulometric determination of $\mathrm{CO}_{2}$ with the Coulomat 702 (Ströhlein) after combustion of the sub-samples of ca. 50 mg in an oxygen stream and using lead borate as aggregat.
$\mathrm{C}_{\text {free }}$ was determined by a procedure derived from DIN 51075 . About 0.5 g sub-sample was handled in an oxygen stream at $850{ }^{\circ} \mathrm{C}$. The generated $\mathrm{CO}_{2}$ was coulometrically determined using the Coulomat 702 (Ströhlein). The sample boat was weighed before and after the chemical reaction and the partial amount of SiC which had also reacted
( $\mathrm{SiC}+2 \mathrm{O}_{2} \rightarrow \mathrm{SiO}_{2}+\mathrm{CO}_{2} \uparrow$ ) was taken into account (see "Method M 2" of APPENDIX 2 of certificate).
Oxygen was determined using about 80 mg sub-samples in a resistance heated furnace TC436 (LECO) in a helium carrier gas stream. CO was catalytically oxidized to $\mathrm{CO}_{2}$. The total concentration of $\mathrm{CO}_{2}$ was measured by an infrared measuring cell.
Homogeneity investigations were also carried out for two of the three not certified, indicative values namely for N and $\mathrm{Si}_{\text {iree }}$.
N was determined by carrier gas hot extraction in a resistance heated furnace TC436 (LECO) using helium as carrier gas and a thermal conductivity measuring cell. Sub-samples of about 80 mg were used.
$\mathrm{SiO}_{2 \text { free }}$ was determined by distillation after chemical reaction. The sub-sample was treated with HF , distilled as $\mathrm{H}_{2} \mathrm{SiF}_{6}$ and determined as Si after absorption in water using ICP OES.
The structure of the documents containing the evaluation of the measurements (see APPENDIX 5) is similar as for the analytes B and Na . The only difference is, that the homogenized sample was not analyzed for the analytes $\mathrm{C}_{\text {free }}, \mathrm{O}, \mathrm{N}$ and $\mathrm{SiO}_{2 \text { free }}$. Therefore no homogeneity test within the bottles (comparing the "within SD" with the SD of the homogenized sample) could be carried out for these analytes. The reason for this is, that these analytes can be assumed to be distributed homogeneously within bottles, because they are tightly fixed within the volume or at the surface of the powder grains.
The homogeneity tests between the bottles had the following results:

- For $\mathrm{C}_{\text {total, }}$ O and N : no significant inhomogeneities,
- $\quad$ For $\mathrm{C}_{\text {free }}$ and $\mathrm{SiO}_{2 \text { ree: }}$ significant inhomogeneities.

The homogeneity test within the bottles for $\mathrm{C}_{\text {total }}$ showed no significant inhomogeneity.

### 4.2.5 Conclusion

The homogeneity investigations showed satisfying results in most cases.
But, independent from the results of the statistical tests carried out, the contributions from the between bottle standard deviations and the within-bottle standard deviations were corrected for by the standard deviation of the homogeneous samples (if determined) and both corrected contributions were (together with the contribution from the round robin test for certification) included into the calculation of the final measurement uncertainties of the certified values (see paragraph 8.2).

## 5 Time stability of the material

The time stability was tested by measuring the oxygen content of the material at the beginning and at the end of a period of three years (from October 2000 till September 2003). It is well known, that the material is very stable in time - and the results of the measurements do underpin this fact. The oxygen content is the most sensitive parameter to indicate the aging of the material.

In the following Tab. 3 the results of the stability measurements are listed. (They are identical with the results achieved for the homogeneity testing and the certification measurements carried out by the same laboratory).

Tab. 3: Stability test carried out with the oxygen mass fraction
in the silicon carbide candidate material

| Date | $10 / 2000$ | $09 / 2003$ |
| :---: | :---: | :---: |
| Measure- <br> ment no. | $(\mathrm{A})$ <br> $[\mathrm{mg} / \mathrm{kg}]$ | $(\mathrm{B})$ <br> $[\mathrm{mg} / \mathrm{kg}]$ |
| 1 | 907.3 | 910 |
| 2 | 911.4 | 900 |
| 3 | 909.1 | 920 |
| 4 | 913.9 | 900 |
| 5 | 895.5 | 890 |
| 6 | 900.1 | 890 |
| 7 | 900.6 |  |
| 8 | 904.9 |  |
| 9 | 906.3 |  |
| 10 | 895.9 |  |
| mean M | 904.5 | 901.7 |
| standard <br> deviation SD | 6.24 | 11.7 |
| $95 \%$ confi- <br> dence interv. | 14.2 | 30.1 |

The mean values of both series of measurements were compared by using a t-test.
The test value is smaller than the critical $t$-value [ $95 \%, \mathrm{f}=14$ ]. That means that there is no significant difference between both measurements. A high stability of the material can be concluded.

## 6 Analytical methods

This chapter describes the analytical procedures and specific parameters used in the certification campaign. The methods used for homogeneity investigations were described above (see chapter 4). The method for the determination of oxygen in the frame of the stability investigation was the same as proposed by method M4 (see APPENDIX 4).

### 6.1 Analytical methods used for certification

In Tab. 4 the elements with certified values and the elements having indicative values are listed as well as the methods used for their determination.
In the first column the element symbols are specified. In the following column serial numbers are given. These serial numbers correspond with the related serial numbers in Tab 5. In the last column the analytical methods (abbreviations see chapter 3) are indicated belonging to the related line numbers in Tab. 5. Thus it is possible to identify which result in Tab. 5 is based on which analytical method.

Tab. 4: Analytical methods used for the determination of certified and of indicative values

| Element | Serial №. in Tab. 5 Analytical method used |
| :---: | :---: |
| AI |  |
| B | 3 ........................................................................................................................................................................................................................................... |
| Ca |  |
| Cr |  |
| Cu |  |
| Fe |  |
| Mg |  |
| Mn |  |
| Na |  |


| Element | Serial №. in Tab. 5 Analytical method used |
| :---: | :---: |
| Ni | 2, 5 ..........................................................................DCarc-OES |
|  | 7.............................................................................ET AAS |
|  | 1 ...........................................................................ETV-ICP OES |
|  | 18 ..........................................................................F AAS |
|  |  |
|  | $3,4,6,8,9,11,12,13,14,16,17,19,20,21,22 \ldots \ldots . \ldots \ldots .$. ICP OES |
|  | 15 .......................................................................... K K-INAA |
| Ti | (1), 21 ......................................................................DCarc-OES |
|  | 4 .............................................................................ETV-ICP OES |
|  | 13 ...........................................................................ICP-MS |
|  | (2), $3,5,6,7,8,9,10,11,12,14,15,16,17,18,20 \ldots \ldots . .$. ICP OES |
|  | 19 .......................................................................... $\mathrm{K}_{0}$-INAA |
| V | 2, 16 ......................................................................DCarc-OES |
|  | (1) ETV-ICP OES |
|  | 11 ICP-MS |
|  | $3,4,5,6,7,8,9,10,12,13,14,15,18,19 \ldots \ldots . . . . . . . . . . . . . . . I C P ~ O E S ~$ |
|  | 17 ........................................................................... $\mathrm{K}_{0}$-INAA |
| Zr | 15 ............................................................................DCarc-OES |
|  | 17 ...........................................................................ETV-ICP OES |
|  | 10, 16 ......................................................................ICP-MS |
|  | 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 19, (20) ..................... ICP OES |
|  | 18 ..........................................................................INAA |
|  | 11 ........................................................................... $\mathrm{K}_{0}$-INAA |
| $\mathrm{C}_{\text {total }}$ | (1), $3,4,5,7,8,9,10,11,13,14,15,16,17,18 \ldots . . . . . . . . C G H E / c o m b .-I R ~$ |
|  | (2) ................................................................. CGHE/titr. |
|  | 6 $\qquad$ CGHE/grav. <br> 12, 19 <br> Comb./ coul |
|  | 12, 19 $\qquad$ Comb./ coul. |
| $\mathrm{Cfree}^{\text {f }}$ | (1), (2), (3), (4), (13), (14) $\qquad$ CGHE/comb.-IR <br> (9), (10), (11), (12) <br> Comb/ coul |
|  | 6,7 .........................................................................Comb./coul. (Method M1) |
|  | 5, 8 $\qquad$ wet chem. oxidation/coul. (Method M2) |
| 0 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, (12) ....................................CGHE |
|  | 11 ..........................................................................CGHE/coul. |
| N | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ......................................CGHE |
| $\mathrm{SiO}_{2 \text { 2ree }}$ | 1 ...........................................................................Vol. |
|  | 2, 3 ..........................................................................MAS |
|  | 4, 5 .........................................................................ICP OES |
|  | 6 ............................................................................ Grav. |
| Sifree | 1 ...........................................................................Coul. |
|  | 2, 4, 5, 6 ...................................................................Vol. |
|  | 3 ..........................................................................Comb. |
| Line number | in parenthesis refer to values not used in the calculation of the certified value |

For the analysis of almost all analytes a variety of different methods was aspired. The only exception was the determination of the free fraction of carbon ( $\mathrm{C}_{\text {free }}$ ). After preliminary investigations only two methods were prescribed (see methods M1 and M2, APPENDIX 1 and 2).

Note: For more detailed consideration see APPENDIX 6 containing information about sample preparation used for each determination.

### 6.2 Methods used for the determination of additional material data

The phase analysis was carried out using X-ray powder diffraction using Rietveld method for evaluation. The particle size distribution was determined by laser light diffraction method.

### 6.3 Methods used for homogeneity testing

Determination of metallic traces (without Na ):
An ICP OES spectrometer "IRIS-AP" (Thermo Elemental) was used in combination with electrothermal evaporation (ETV) for the analysis of sub-samples. In house carbide powders with known trace elemental contents and in some cases aliquots of calibration solutions were used for calibration. Resulting lack of trueness of results or of metrological traceability are not relevant, because a high precision is the only necessity in case of homogeneity investigation. A real problem is the small sub-sample mass used with ETV ICP OES. A sub-sample mass of about 2 mg could be merely applied. This is much less than normally used in wet chemical analysis and is not very representative for the entire sample. On the other hand it is possible to summarize some measurements at the same sample to one result, thus summarizing the sub-sample mass to a virtual value representing a higher sub-sample mass. This procedure was followed, although additional practical work is involved to perform the measurements. For more detailled information see APPENDIX 5.

Analytes B and Na :
For the determination of B 0.5 g sub-samples were weighed into the PTFE-liner of the pressure digestion system DAB II (Berghof, Germany) and digested at $250^{\circ} \mathrm{C}$ for 8 hours, after adding $\mathrm{HF}(73 \%)$ and $\mathrm{HNO}_{3}$ ( $100 \%$, fuming). The boron concentration in the digested and diluted sample was measured by ICP OES ("Ultrace", Jobin Yvon). The calibration solutions were matrix adapted for acids and for the concentration of Si . The final values used in the homogeneity investigation are the mean values of two measurements of the same digestion solution at different days.
For the determination of Na 0.5 mg sub-samples were analysed directly by solid sampling AAS (SS ET AAS) using the spectrometer "AAS SEA solid" (Analytik Jena AG, Jena, Germany). The calibration was done by using aliquots of calibration solutions. It was not necessary to summarize measurements from different sub-samples, as done for the other metallic elements (see above).

Non-metallic analytes:
Different methods were applied for the determination of different analytes.
The content of $\mathrm{C}_{\text {total }}$ was determined by two different methods. One consisted in the combustion of sub-samples of $20-25 \mathrm{mg}$ in a high frequency furnace WC200 (LECO) in an oxygen stream. The generated $\mathrm{CO}_{2}$ gas was collected in a C-trap and was measured by an infrared measuring cell after release. The other method consisted in the coulometric determination of $\mathrm{CO}_{2}$ with the Coulomat 702 (Ströhlein) after combustion of the sub-samples of ca. 50 mg mass in an oxygen stream and using lead borate as aggregate.
$\mathrm{C}_{\text {free }}$ was determined by a procedure derived from DIN 51075 . About 0.5 g sub-sample was handled in an oxygen stream at $850{ }^{\circ} \mathrm{C}$. The generated $\mathrm{CO}_{2}$ was coulometrically determined using the Coulomat 702 (Ströhlein). The sample boat was weighed before and after the chemical reaction and the partial amount of SiC which had also reacted $\left(\mathrm{SiC} \rightarrow \mathrm{SiO}_{2}+\right.$ $\mathrm{CO}_{2} \uparrow$ ) was taken into account (see "Method M 2" of appendix of certificate).
Oxygen was determined using about 80 mg sub-samples in a resistance heated furnace TC436 (LECO) in a helium carrier gas stream. CO was catalytically oxidized to $\mathrm{CO}_{2}$. The total concentration of $\mathrm{CO}_{2}$ was measured by an infrared measuring cell.
Homogeneity investigations were also carried out for two of the three not certified, indicative values namely for N and $\mathrm{Si}_{\text {iree }}$. N was determined by carrier gas hot extraction in a resistance heated furnace TC436 (LECO) using helium as carrier gas and a thermal conductivity measuring cell. Sub-samples of about 80 mg were used. $\mathrm{SiO}_{2 \text { free }}$ was determined by
distillation after chemical reaction. The sub-sample is treated with HF , distilled as $\mathrm{H}_{2} \mathrm{SiF}_{6}$ and determined as Si after absorption in water by using ICP OES.

### 6.4 Method used for time stability checking

The oxygen content was measured by CGHE with infrared detection (Method M4, APPENDIX 4)

## 7 Results and discussion

7.1 Presentation of the data; way of statistical evaluation

As soon as all the results of the certification analyses had been submitted, they were summarized and checked by a statistical program of BCR for evaluation of results of interlaboratory comparisons for certification [2]. After this the data were technically discussed at four of the biannual meetings of the Working Group "Special Materials" of the Committee of Chemists of the GDMB, where some of the participating laboratories were represented. After the second meeting it was clear, that all the metallic analytes (and boron) had been determined in the interlaboratory comparison without noteworthy difficulties. Furthermore it was decided to take the parameters nitrogen, free silicon dioxide and free silicon as indicative parameters because of their relatively high uncertainty and in view to their secondary importance.
The remaining problems were related to the parameters "total carbon", "free carbon" and "oxygen" (and somehow also "nitrogen", in spite of being an indicative value). The uncertainties of the results for these parameters had been inadequately high in relation to their importance. This lead to the idea to formulate prescribed methods (in case of free carbon) or recommended methods (in case of the other problematic parameters). After discussion these methods were agreed upon in the GDMB working group.
In case of free carbon three methods were prescribed and all participants who had not followed one of these methods in the first interlaboratory comparison were asked to repeat their measurements by using definitely one of the prescribed three methods. In the end it was evident that only two of the three methods lead to results without a wide spreading. Only the results of these two analytical methods were accepted. Thus the certified parameter $\mathrm{C}_{\text {free }}$ is a method depending one.
In case of the other three critical parameters only those participants of the interlaboratory comparison were asked to repeat their measurements, who had delivered results lying far from the central distribution. To improve their new measurements some hints were given how to carry out the analyses. The hints became part of the recommended analytical methods worked out for the determination of these parameters.
After finalization of the second part of the interlaboratory comparison all the final results of the certification analyses which had been submitted, were summarized and checked with the statistical program of BCR for evaluation of results of interlaboratory comparisons for certification [2] as explained above. After this the data were technically discussed at a meeting of the Working Group "Special Materials" of the Committee of Chemists of GDMB. In the following Tab. 5 all accepted laboratory mean values are summarized.

Tab. 5: Means of the series of measurements for the analytical procedure of one laboratory (Laboratory means)
mass fractions in $\mathrm{mg} / \mathrm{kg}$ ( $\mathrm{C}_{\text {total }}$ in mass\%)

| Serial № | AI | B | Ca | Cr | Cu | Fe | Mg | Mn | Na | Ni | Ti | V | Zr | $\mathrm{C}_{\text {total }}$ (\%) | $\mathrm{C}_{\text {free }}$ | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | - | 55 | 21.2 | 2.5 | 1.0 | - | 3.8 | 1.00 | - | 24.1 | - | - | 19.1 | - | 415 | 825 |
| 2 | 305 | 55 | 25.4 | 2.6 | 1.1 | - | 5.5 | 1.10 | 15.0 | 24.2 | - | 28.83 | 21.2 | - | 500 | 845 |
| 3 | 327 | 61 | - | 2.6 | 1.2 | 131 | 5.8 | 1.30 | 15.3 | 26.2 | 68 | 30.83 | 22.0 | 29.57 | 515 | 862 |
| 4 | 334 | 62 | 27.4 | 3.2 | 1.2 | 135 | 5.9 | 1.32 | 15.7 | 28.7 | 70 | 36.29 | 22.4 | 29.75 | 540 | 865 |
| 5 | 345 | 63 | 29.1 | 3.3 | 1.3 | 135 | 5.9 | 1.33 | 16.7 | 29.8 | 72 | 37.00 | 22.8 | 29.82 |  | 873 |
| 6 | 354 | 63 | 29.1 | 3.4 | 1.3 | 137 | 6.0 | 1.36 | 17.0 | 30.5 | 73 | 38.00 | 23.2 | 29.85 |  | 902 |
| 7 | 367 | 63 | 29.1 | 3.4 | 1.4 | 137 | 6.0 | 1.37 | 17.3 | 30.9 | 74 | 39.27 | 23.7 | 29.86 |  | 915 |
| 8 | 371 | 65 | 29.5 | 3.5 | 1.4 | 140 | 6.1 | 1.38 | 17.7 | 31.0 | 77 | 39.67 | 23.7 | 29.87 |  | 948 |
| 9 | 371 | 66 | 29.5 | 3.5 | 1.4 | 142 | 6.3 | 1.41 | 17.8 | 31.1 | 77 | 41.25 | 24.3 | 29.89 |  | 951 |
| 10 | 373 | 66 | 29.8 | 3.6 | 1.8 | 143 | 6.3 | 1.42 | 18.0 | 31.3 | 77 | 41.35 | 25.4 | 29.90 |  | 988 |
| 11 | 377 | 67 | 29.8 | 3.6 | 2.3 | 143 | 6.4 | 1.47 | 18.7 | 31.7 | 77 | 42.38 | 25.6 | 29.91 |  | 1032 |
| 12 | 378 | - | 30.5 | 3.9 | 2.5 | 146 | 6.5 | 1.48 | 18.8 | 32.2 | 79 | 42.53 | 25.8 | 29.91 |  | - |
| 13 | 381 | - | 32.0 | 4.0 | - | 149 | 6.5 | 1.49 | 19.1 | 32.6 | 79 | 44.38 | 26.0 | 29.92 |  |  |
| 14 | 385 |  | 32.7 | 4.1 |  | 149 | 6.8 | 1.53 | 19.3 | 33.1 | 81 | 45.48 | 26.6 | 29.94 |  |  |
| 15 | 392 |  | 35.7 | 4.2 |  | 149 | 6.9 | 1.72 | 19.4 | 35.2 | 83 | 45.87 | 27.0 | 29.94 |  |  |
| 16 | 399 |  | - | 4.4 |  | 152 | 8.2 | 1.79 | 19.5 | 35.5 | 83 | 46.07 | 28.7 | 29.96 |  |  |
| 17 | 402 |  | - | - |  | 154 | 9.0 | 2.03 | - | 36.5 | 84 | 47.49 | 29.1 | 29.96 |  |  |
| 18 | 403 |  |  |  |  | 155 | - | - | - | 39.2 | 84 | 48.27 | 30.4 | 30.03 |  |  |
| 19 | 415 |  |  |  |  | 158 | - |  |  | 39.4 | 85 | 49.92 | 31.0 | 30.13 |  |  |
| 20 |  |  |  |  |  | 162 |  |  |  | 39.4 | 85 |  | - |  |  |  |
| 21 |  |  |  |  |  | 164 |  |  |  | 40.5 | 87 |  |  |  |  |  |
| 22 |  |  |  |  |  | 164 |  |  |  | 41.1 |  |  |  |  |  |  |
| 23 |  |  |  |  |  | 173 |  |  |  |  |  |  |  |  |  |  |
| 24 |  |  |  |  |  | - |  |  |  |  |  |  |  |  |  |  |
| M: | 372 | 63 | 29.4 | 3.5 | 1.5 | 149 | 6.3 | 1.4 | 17.7 | 32.9 | 79 | 41 | 25.2 | 29.89 | 493 | 910 |
| $\mathrm{S}_{\mathrm{m}}$ : | 30 | 5 | 3.4 | 0.6 | 0.5 | 12 | 1.1 | 0.2 | 1.5 | 5.0 | 6 | 6 | 3.2 | 0.12 | 55 | 65 |



The „, " indicates that an outlaying value has been detected by a statistical test which was withdrawn or omitted after discussion in GDMB meetings.
Values given in italic type are indicative values only.
Note: The serial number should not be mistaken for the laboratory code number.
M : Arithmetic mean of the laboratory means
$\mathrm{s}_{\mathrm{m}}$ : Standard deviation of the laboratory means

### 7.2 Technical discussion

The results of table 5 are listed in more detail in Tab. 6 (Tables $6 a 1 \ldots 6 s 1$ ) compiled in APPENDIX 7. These tables are based on the statistical evaluation of the interlaboratory comparison using the BCR program [2], they are arranged alphabetically by different element symbols. Each table consists of the following three parts:

- upper part: a table containing 11 columns.
\#First column: current laboratory number ("L") in this special test
\#second column: laboratory code number in this interlaboratory comparison together with the abbreviation of the analytical method used and a number 1,2 or 3 , which is the self- declaration of the laboratory concerning their experience to determine this analyte in SiC ("1" stands for no experience; "2" stands for medium experience and " 3 " stands for high experience
\#third column: laboratory mean values arranged by increasing values
\#fourth and fifth column: standard deviations of laboratory single values and half width of confidence intervals of the laboratory mean values, respectively
\#following 6 columns: all single values from different sub-samples
center-part: a table containing: range of all single values; in case of no pooling of all single values: mean of laboratory means, half width of $95 \%$ confidence interval and half width of $95 \%$ tolerance interval; in case of pooling of all single values (but statistically not allowed in all current cases): mean of all single values and half width of $95 \%$ confidence interval and half width of $95 \%$ tolerance interval. Further on there are explanations to the abbreviations of statistical tests applied and indicated in the following diagram.
- lower part: based on the specifications of the upper and center-parts of the page - a diagram showing the mean of all means of data sets (vertical line), the corresponding $95 \%$ confidence interval (C.I.) and tolerance interval (T.I.) and the means of data sets with their $95 \%$ confidence intervals (horizontal bars) arranged by increasing mean values. These bars are marked by abbreviations of four statistical tests, if results of one or more tests were positive at a significance level of $5 \%$ or even $1 \%$. (abbreviations are given in the center part of the page).

The following explanations are based on the results from the laboratories and their statistical evaluation as described in detail in the tables 6 of APPENDIX 7. The table of APPENDIX 8 is a supplementation to APPENDIX 7, in so far as Grubbs tests applied are explained in detail. It is distinguished between single and pair tests - and all applied Grubbs tests with their results are listed as a survey. The results of APPENDIX 7 and the decisions made are shortly summarized in the following.

### 7.2.1 Metallic analytes

### 7.2.1.1 Aluminium (Tab. 6a1; 6a2)

19 Laboratories delivered their results; with one exception based on 6 separate determinations. Most laboratories used ICP OES. The lowest set of values was based on AAS measurements. It was identified as an outlier by statistical tests and was removed after discussion. In the second run of the evaluation program carried out with the remaining 18 laboratories no further serious outlier was found. The certified mean value is not only underpinned by ICP OES measurements, but also by results from measurements by

ICP-MS, ET AAS, ETV-ICP OES and DC arc-OES. All remaining values lie within the tolerance interval.

### 7.2.1.2 Boron (Tab. 6b1; 6b2)

13 Laboratories delivered their results; with two exceptions based on 6 separate determinations. Most laboratories used ICP OES. Both sets of highest values were based on ICP OES measurements. They were identified as outliers by statistical tests and were removed after discussion. In the second run of the evaluation program carried out with the remaining 11 laboratories no further serious outlier was found. The certified mean value is not only underpinned by ICP OES measurements, but also by results from measurements by MAS and DC arc-OES. All remaining values lie within the tolerance interval.

### 7.2.1.3 Calcium (Tab. 6c1; 6c2)

17 Laboratories delivered their results; with two exceptions based on 6 separate determinations. Most laboratories used ICP OES. The two sets of highest values were based on ICP OES and F AAS measurements, respectively. They were identified as outliers by statistical tests and were removed after discussion. Another set of values submitted by laboratory No. 27 and based on ICP OES measurements was also removed, because of the wide spreading of the two single values which only had been delivered. In the second run of the evaluation program carried out with the remaining 14 laboratories no further sets of values were removed, although two of them were statistically eye-catching. The certified mean value is not only underpinned by ICP OES measurements, but also by results from measurements by F AAS, ICP-MS and ETV-ICP OES. All remaining laboratory mean values lie within the tolerance interval.

### 7.2.1.4 Chromium (Tab. 6d1; 6d2)

17 Laboratories delivered their results, each of them based on 6 separate determinations. Many laboratories used ICP OES, but there was a good mixing of different methods. The set of highest values was based on ICP OES measurements. It was identified as an outlier by statistical tests and was removed after discussion. In the second run of the evaluation program carried out with the remaining 16 laboratories no further serious outlier was identified. The certified mean value is not only underpinned by ICP OES measurements, but also by results from measurements with INAA, K K-INAA, ICP-MS, DC arc-OES, ETVICP OES and ET AAS. All remaining laboratory mean values lie within the tolerance interval.

### 7.2.1.5 Copper (Tab. 6e1; 6e2)

13 Laboratories delivered their results, with one exception each of them was based on 6 separate determinations. Most laboratories used ICP OES. The set of highest values was based on ICP OES measurements. It was identified as an outlier by statistical tests and was removed without discussion. In the second run of the evaluation program carried out with the remaining 12 laboratories no further outlier was removed after discussion of the remaining indicated outliers. The certified mean value is not only underpinned by ICP OES measurements, but also by results from measurements with ET AAS, ICP-MS, ETV-ICP OES and DC arc-OES. All remaining laboratory mean values lie within the tolerance interval.

### 7.2.1.6 Iron (Tab. 6f1; 6f2; 6f3)

24 Laboratories delivered their results, with one exception each of them based on 6 separate determinations. Most laboratories used ICP OES. The set with the lowest values based on DC arc-OES measurements and the set with the highest values was based on titrimetry measurements. They were identified as outliers by statistical tests and were removed after discussion. In the second run of the evaluation program carried out with the remaining 22
laboratories the lowest set of accepted sets of values was also identified as a serious outlier and was also removed after discussions. In the third run of the evaluation program no further serious outlier was identified. The certified mean value is not only underpinned by ICP OES measurements, but also by results from measurements with ICP-MS, K ${ }_{0}$-INAA, INAA, DC arc-OES, F AAS and ETV-ICP OES. All remaining laboratory mean values lie within the tolerance interval.

### 7.2.1.7 Magnesium (Tab. 6g1; 6g2)

19 Laboratories delivered their results, each of them based on 6 separate determinations. Many laboratories used ICP OES. The two sets with the highest values were based on ICP OES measurements. Both of them were identified as outliers by statistical tests and were removed after discussion. In the second run of the evaluation program carried out with the remaining 17 laboratories no further outlier was removed. The certified mean value is not only underpinned by ICP OES measurements, but also by results from measurements with ET AAS, F AAS, ETV-ICP OES, DC arc-OES and ICP-MS. All remaining laboratory mean values lie within the tolerance interval.

### 7.2.1.8 Manganese (Tab. 6h1; 6h2)

18 Laboratories delivered their results, each of them based on 6 separate determinations. Many laboratories used ICP OES. The set with the highest values was based on ICP OES measurements. This set was identified as an outlier by statistical tests, but it was mainly removed after discussion because of the wide spreading of single values. In the second run of the evaluation program carried out with the remaining 17 laboratories no further outlier was removed. The certified mean value is not only underpinned by ICP OES measurements, but also by results of measurements with INAA, $\mathrm{K}_{0}$-INAA, ICP-MS, ET AAS, DC arc-OES and ETV-ICP OES. All remaining laboratory mean values lie within the tolerance interval.

### 7.2.1.9 Sodium (Tab. 6i1; 6i2; 6i3)

18 Laboratories delivered their results, each of them based on 6 separate determinations. There was a very good mix of different methods. The set with the lowest values was based on ETV-ICP OES measurements and the set with the highest values on ICP OES measurements. The set with the lowest values was identified as an outlier by statistical tests and the set with the highest values as one with very wide spreading single values. Both sets were removed after discussion. In the second run the evaluation program was carried out with the remaining 16 laboratories. The set with the highest values in this run was identified as a further outlier and removed after discussion. The main reason for this decision was a lack of overlapping of the confidence interval of the mean value of this data set with the lower one. The certified mean value of the means of the remaining 15 laboratories is based on measurements with ICP OES, ICP-MS, INAA, F AAS, SS ET AAS, K $\mathrm{K}_{0}$-INAA and F AES. All remaining laboratory mean values lie within the tolerance interval.

### 7.2.1.10 Nickel (Tab. 6j1)

22 Laboratories delivered their results, with one exception each of them based on 6 separate determinations. Most laboratories used ICP OES. No set of values was identified as a serious outlier by statistical tests, therefore no set was removed and no further run of the evaluation program was carried out. The certified mean value is not only underpinned by ICP OES measurements, but also by results of measurements with ICP-MS, ET AAS, $\mathrm{K}_{0}$-INAA, F AAS, DC arc-OES and ETV-ICP OES. All remaining laboratory mean values lie within the tolerance interval.

### 7.2.1.11 Titanium (Tab. 6k1; 6k2)

21 Laboratories delivered their results, with one exception each of them based on 6 separate determinations. Most laboratories used ICP OES. The set with the lowest values was based on DCarc-OES measurements. This set was identified as an outlier by statistical tests. Also the next set with high values was removed after discussion, but this one because of the extremely wide spreading of single values. In the second run of the evaluation program carried out with the remaining 19 laboratories no further outlier was removed. The certified mean value is not only underpinned by ICP OES measurements, but also by results from measurements with ICP-MS, $\mathrm{K}_{0}-I N A A, ~ E T V-I C P ~ O E S ~ a n d ~ D C ~ a r c-O E S . ~ A l l ~ r e m a i n i n g ~$ laboratory mean values lie within the tolerance interval.
7.2.1.12 Vanadium (Tab. 611; 612)

19 Laboratories delivered their results, with one exception each of them based on 6 separate determinations. Most laboratories used ICP OES. The set with the lowest values was based on ETV-ICP OES measurements. This set was removed after discussion because of the wide spreading of single values. In the second run of the evaluation program carried out with the remaining 18 laboratories no further outlier was removed. The certified mean value is not only underpinned by ICP OES measurements, but also by results from measurements with ICP-MS, $\mathrm{K}_{0}$-INAA, DC arc-OES.

### 7.2.1.13 Zirconium (Tab. 6m1; 6m2)

20 Laboratories delivered their results, with one exception each of them based on 6 separate determinations. Most laboratories used ICP OES. The set with the highest values was based on ICP OES measurements. This set was removed after discussion because of the wide spreading of single values and because the mean value lying at the very outer limit of the tolerance interval. In the second run of the evaluation program carried out with the remaining 19 laboratories no further outlier was removed. The certified mean value is not only underpinned by ICP OES measurements, but also by results from measurements with ICPMS, $\mathrm{K}_{0}$-INAA, DC arc-OES, ETV-ICP OES and INAA. All remaining laboratory mean values lie within the tolerance interval.

### 7.2.2 Non-metallic certified analytes

### 7.2.2.2 Total carbon (Tab. 6n1; 6n2)

19 Laboratories delivered their results, with one exception each of them based on 6 separate determinations. Most laboratories used CGHE/combustion method with IR detection. The set with the lowest values was based on measurements with this method and the with the next higher values set was based on measurements with CGHE and titrimetry. Both sets were identified as outliers. They were removed after discussion. In the second run of the evaluation program carried out with the remaining 17 laboratories no further outlier was removed. The certified mean value is not only underpinned CGHE/combustion measurements with IR detection, but also by two coulometric and one gravimetric measurement. All remaining laboratory mean values lie within the tolerance interval.

### 7.2.2.3 Free carbon (Tab. 6o1a; 6o1b, 6o1c)

14 Laboratories delivered their results, each of them based on 6 separate determinations. Most laboratories used CGHE/combustion method with IR detection or combustion method with coulometric determination. For information all results are listed and illustrated in Tab. 601 a . The spreading of the different laboratory mean values in this interlaboratory comparison was intolerably large. Therefore after a detailed discussion of experts two methods were prescribed for use that had led to result sets positioned in the center.

Therefore both tables, Tab. 601a which summarizes all results and Tab. 6o1b which lists only results from the not prescribed methods, are for information only. The mean of the means in both tables with $519 \mathrm{mg} / \mathrm{kg}$ and $530 \mathrm{mg} / \mathrm{kg}$, respectively, are not so far from the finally certified value basing on the application of the prescribed methods only. This certified value in table 6o1c is $493 \mathrm{mg} / \mathrm{kg}$ of free carbon in SiC. The certified value for carbon free is the only one which is method depending, because only the two prescribed methods were admitted. The reason for this proceeding was the decrease of the confidence interval when only these methods were used (from $157 \mathrm{mg} / \mathrm{kg}$ to $86 \mathrm{mg} / \mathrm{kg}$ ). Thus only the results in Tab. 6o1c are relevant for certification. They are basing on two results based on method M1 and two on method M2, respectively, (APPENDIX 1 and 2). The 4 results were submitted by 3 leading expert laboratories with very high experience in this kind of analyses. Therefore the values were accepted as being trustable.

### 7.2.2.4 Oxygen (Tab. 6p1; 6p2)

12 Laboratories delivered their results, each of them based on 6 separate determinations. With one exception all laboratories used CGHE/combustion method with IR detection. The set with the highest values was based on measurements with this method. It was identified as outlier by statistical tests and was removed after discussion, also because there was no overlapping with the confidence interval with the next set of values. In the second run of the evaluation program carried out with the remaining 11 laboratories no further outlier was removed. The certified mean value is not only underpinned by CGHE/combustion measurements with IR detection, but also by one coulometric measurement. All remaining laboratory mean values lie within the tolerance interval.

### 7.2.3 Non-metallic not certified analytes (indicative values)

### 7.2.3.1 Nitrogen (Tab. 6q1)

11 Laboratories delivered their results, each of them based on 6 separate determinations. All laboratories used CGHE method with TC detection. Therefore this is a method-specific parameter. No serious outlier was identified by statistical tests and no set of values was removed. All laboratory mean values lie within the tolerance interval.

### 7.2.3.2 Free silicon (Tab. 6r1)

6 Laboratories delivered their results, each of them based on 6 separate determinations. Most laboratories used volumetry. The spreading of the laboratory means was extremely wide, while the spreading of the single values within the laboratories was much smaller for most sets of results. No extreme oulier was identified. The calculated mean value is based on four different methods, but the confidence interval is extremely large.

### 7.2.3.3 Free silicon dioxide (Tab. 6s1)

6 Laboratories delivered their results, each of them based on 6 separate determinations. Most laboratories used colorimetry or ICP OES. The spreading of the laboratory means was rather wide. No extreme outlier was identified. The calculated mean value is based on four different methods.

### 7.3 Summary of statistical evaluation

Data and results of the statistical evaluation of the interlaboratory comparison using the BCR program [2] are summarized in Tab. 7.1, 7.2 and 7.3.

Following abbreviations were used:
(a) = Expressed in $\mathrm{mg} / \mathrm{kg}$; (b) = Outlier at $1 \%$ significance; (c) = Outlier at $5 \%$ significance

### 7.3.1 Metallic analytes

## Tab. 7.1: Summary of results of statistical evaluation

| Element run of evaluation program | $\begin{gathered} \mathrm{Al} \\ \text { run } 1 \end{gathered}$ | $\begin{gathered} \mathrm{Al} \\ \text { run } 2 \end{gathered}$ | $\begin{gathered} \mathrm{B} \\ \text { run } 1 \end{gathered}$ | $\begin{gathered} \mathrm{B} \\ \text { run } 2 \end{gathered}$ | $\begin{gathered} \mathrm{Ca} \\ \text { run } 1 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Number of data sets Total number of replicate measurements | $\begin{array}{r} 19 \\ 110 \\ \hline \end{array}$ | $\begin{array}{r} 18 \\ 104 \\ \hline \end{array}$ | $\begin{aligned} & 13 \\ & 72 \\ & \hline \end{aligned}$ | $\begin{aligned} & 11 \\ & 60 \end{aligned}$ | $\begin{aligned} & 17 \\ & 95 \end{aligned}$ |
| Mean of means (a) <br> St. Dev of means <br> (a) | $\begin{array}{r} 362.327 \\ 47.481 \\ \hline \end{array}$ | $\begin{gathered} 371.123 \\ 28.821 \end{gathered}$ | $\begin{aligned} & 71.177 \\ & 22.277 \\ & \hline \end{aligned}$ | $\begin{array}{r} 62.291 \\ 4.041 \\ \hline \end{array}$ | $\begin{aligned} & 33.454 \\ & 12.445 \end{aligned}$ |
| Outlying or straggling mean values <br> - Dixon test <br> - Grubbs test (single and pair test) <br> - Nalimov t-test <br> Differences between labs statistically significant? <br> - Snedecor F-test <br> Outlying or straggling variances <br> - Cochran test <br> Variances homogeneous <br> - Bartlett test | b, c <br> b, c <br> b, c <br> b, c <br> no <br> no | $\begin{array}{r} \text { no } \\ \text { no } \\ \text { c } \\ \text { b, c } \\ \text { no } \\ \text { no } \\ \hline \end{array}$ | b, c <br> no | $\begin{array}{r} c \\ c \\ c \\ b, c \\ b, c \\ \text { b, } \\ \text { no } \end{array}$ | b, c <br> no |
| St. Dev. within - laboratories (a) <br> St. Dev. between laboratories (a) | $\begin{array}{r} 47.858 \\ 9.031 \\ \hline \end{array}$ | $\begin{array}{r} 28.819 \\ 9.266 \\ \hline \end{array}$ | $\begin{array}{r} 23.040 \\ 4.647 \\ \hline \end{array}$ | $\begin{aligned} & 3.911 \\ & 2.804 \end{aligned}$ | $\begin{array}{r} 12.794 \\ 2.548 \\ \hline \end{array}$ |
| Half-width of the 95\% confidence interval (a) | 22.885 | 14.332 | 13.462 | 2.715 | 6.399 |

Abbreviations:
(a) = Expressed in mg/kg; (b) = Outlier at 1\% significance; (c) = Outlier at 5\% significance

| Element run of evaluation program | $\begin{gathered} \mathrm{Ca} \\ \text { run } 2 \end{gathered}$ | $\begin{gathered} \mathrm{Cr} \\ \text { run } 1 \end{gathered}$ | $\begin{gathered} \mathrm{Cr} \\ \text { run } 2 \end{gathered}$ | Cu run 1 | Cu run 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Number of data sets Total number of replicate measurements | $\begin{aligned} & \hline 14 \\ & 81 \\ & \hline \end{aligned}$ | $\begin{array}{r} 17 \\ 102 \\ \hline \end{array}$ | $\begin{aligned} & 16 \\ & 96 \\ & \hline \end{aligned}$ | $\begin{aligned} & 13 \\ & 77 \\ & \hline \end{aligned}$ | $\begin{aligned} & 12 \\ & 71 \\ & \hline \end{aligned}$ |
| Mean of means (a) St. Dev of means | $\begin{array}{r} 29.351 \\ 3.362 \\ \hline \end{array}$ | $\begin{aligned} & 3.616 \\ & 0.771 \\ & \hline \end{aligned}$ | $\begin{aligned} & 3.486 \\ & 0.575 \\ & \hline \end{aligned}$ | $\begin{array}{r} 2.874 \\ 5.061 \\ \hline \end{array}$ | $\begin{aligned} & 1.476 \\ & 0.479 \end{aligned}$ |
| Outlying or straggling mean values <br> - Dixon test <br> - Grubbs test (single and pair test) <br> - Nalimov t-test <br> Differences between labs statistically significant? <br> - Snedecor F-test <br> Outlying or straggling variances <br> Cochran test <br> Variances homogeneous <br> - Bartlett test | $\begin{array}{r} \text { no } \\ \text { c } \\ \mathrm{b}, \mathrm{c} \\ \mathrm{~b}, \mathrm{c} \\ \mathrm{~b}, \mathrm{c} \\ \mathrm{no} \end{array}$ | $\begin{array}{r} \text { no } \\ \text { c } \\ \mathrm{b}, \mathrm{c} \\ \mathrm{~b}, \mathrm{c} \\ \mathrm{~b}, \mathrm{c} \\ \text { no } \end{array}$ | $\begin{array}{r} \text { no } \\ \text { no } \\ \text { no } \\ \text { b, c } \\ \text { b, c } \\ \text { no } \end{array}$ | b, c <br> b, c: <br> Did not run | no <br> b, c <br> C <br> b, c <br> b, c <br> b, c: <br> Did not run |
| St. Dev. within - laboratories (a) St. Dev. between laboratories (a) | 3.139 1.078 | 0.746 0.480 | 0.548 0.422 | 5.080 0.827 | $\begin{aligned} & 0.427 \\ & 0.541 \\ & \hline \end{aligned}$ |
| Half-width of the 95\% confidence interval (a) | 1.941 | 0.397 | 0.306 | 3.059 | 0.304 |

Abbreviations:
(a) = Expressed in mg/kg;
(b) = Outlier at $1 \%$ significance
(c) = Outlier at $5 \%$ significance

| Element run of evaluation program | $\begin{gathered} \mathrm{Fe} \\ \text { run } 1 \end{gathered}$ | $\begin{gathered} \mathrm{Fe} \\ \mathrm{run} 2 \end{gathered}$ | $\begin{gathered} \mathrm{Fe} \\ \text { run } 3 \end{gathered}$ | $\begin{gathered} \mathrm{Mg} \\ \text { run } 1 \end{gathered}$ | $\begin{gathered} \mathrm{Mg} \\ \text { run } 2 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Number of data sets | 24 | 22 | 21 | 19 | 17 |
| Total number of replicate measurements | 140 | 128 | 122 | 114 | 102 |
| Mean of means (a) | 147.648 | 146.517 | 148.383 | 7.356 | 6.340 |
| St. Dev of means (a) | 22.468 | 14.096 | 11.323 | 3.670 | 1.092 |
| Outlying or straggling mean values |  |  |  |  |  |
| - Dixon test | b, c | c | no | b, c | b, c |
| - Grubbs test (single and pair test) | b, c | c | no | b, c | c |
| - Nalimov t-test | b, c | b, c | c | b, c | b, c |
| Differences between labs statistically significant? <br> - Snedecor F-test | b, c |
| Outlying or straggling variances |  |  |  |  |  |
| - Cochran test | b, c |
| Variances homogeneous <br> - Bartlett test | no | no | no | no | no |
|  |  |  |  |  |  |
| St. Dev. within - laboratories (a) St. Dev. between laboratories (a) | $\begin{aligned} & 22.204 \\ & 10.501 \end{aligned}$ | $\begin{aligned} & 13.231 \\ & 10.866 \end{aligned}$ | 10.370 9.902 | 3.478 2.874 | $\begin{aligned} & 1.056 \\ & 0.678 \end{aligned}$ |
| Half-width of the 95\% confidence interval (a) | 9.487 | 6.250 | 5.154 | 1.769 | 0.561 |

Abbreviations:
(a) = Expressed in $\mathrm{mg} / \mathrm{kg}$; (b) = Outlier at $1 \%$ significance; (c) = Outlier at $5 \%$ significance

| Element run of evaluation program | $\begin{gathered} \hline \mathrm{Mn} \\ \text { run } 1 \end{gathered}$ | $\begin{gathered} \hline \mathrm{Mn} \\ \text { run } 2 \end{gathered}$ | Na run 1 | $\begin{gathered} \mathrm{Na} \\ \text { run } 2 \end{gathered}$ | Na run 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Number of data sets | 18 | 17 | 18 | 16 | 15 |
| Total number of replicate measurements | 108 | 102 | 108 | 96 | 90 |
| Mean of means (a) | 1.489 | 1.441 | 17.855 | 18.012 | 17.691 |
| St. Dev of means (a) | 0.310 | 0.241 | 3.131 | 1.933 | 1.494 |
| Outlying or straggling mean values |  |  |  |  |  |
| - Dixon test | no | no | c | no | no |
| - Grubbs test (single and pair test) | b, c | no | c | c | no |
| - Nalimov t-test | b, c | b, c | b, c | b, c | no |
| Differences between labs statistically significant? |  |  |  |  |  |
| - Snedecor F-test | $\mathrm{b}, \mathrm{c}$ | b, c | b, c | b, c | b, c |
| Outlying or straggling variances |  |  |  |  |  |
| - Cochran test | b, c |
| Variances homogeneous |  |  |  |  |  |
| - Bartlett test | b, c: <br> Did not run | b, c: <br> Did not run | no | no | no |
| St. Dev. within - laboratories (a) | 0.292 | 0.235 | 3.044 | 1.896 | 1.455 |
| St. Dev. between laboratories (a) | 0.254 | 0.129 | 1.803 | 0.914 | 0.832 |
| Half-width of the 95\% confidence interval (a) | 0.154 | 0.124 | 1.557 | 1.030 | 0.827 |

Abbreviations:
(a) = Expressed in $\mathrm{mg} / \mathrm{kg}$; (b) = Outlier at $1 \%$ significance; (c) = Outlier at $5 \%$ significance

| Element run of evaluation program | $\begin{gathered} \mathrm{Ni} \\ \text { run } 1 \end{gathered}$ | $\begin{gathered} \mathrm{Ti} \\ \text { run } 1 \end{gathered}$ | $\begin{gathered} \mathrm{Ti} \\ \text { run } 2 \end{gathered}$ | $\begin{gathered} \mathrm{V} \\ \text { run } 1 \end{gathered}$ | $\begin{gathered} \mathrm{V} \\ \text { run } 2 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Number of data sets | 22 | 21 | 19 | 19 | 18 |
| Total number of replicate measurements | 129 | 122 | 110 | 111 | 105 |
| Mean of means (a) | 32.904 | 76.969 | 78.668 | 40.510 | 41.382 |
| St. Dev of means (a) | 4.980 | 7.807 | 5.550 | 6.752 | 5.743 |
| Outlying or straggling mean values |  |  |  |  |  |
| - Dixon test | no | no | no | no | no |
| - Grubbs test (single and pair test) | no | b, c | no | no | no |
| - Nalimov t-test | no | b, c | c | c | c |
| Differences between labs statistically significant? <br> - Snedecor F-test | b, c |
| Outlying or straggling variances |  |  |  |  |  |
| - Cochran test | b, c |
| Variances homogeneous |  |  |  |  |  |
| - Bartlett test | no | no | no | no | no |
| St. Dev. within - laboratories (a) | 4.830 | 7.344 | 5.364 | 6.702 | 5.710 |
| St. Dev. between laboratories (a) | 3.332 | 6.482 | 3.399 | 3.323 | 2.647 |
| Half-width of the 95\% confidence interval (a) | 2.208 | 3.554 | 2.675 | 3.254 | 2.856 |

Abbreviations:
(a) = Expressed in $\mathrm{mg} / \mathrm{kg}$;
(b) = Outlier at $1 \%$ significance;
(c) = Outlier at 5\% significance


Abbreviations:
(a) = Expressed in mg/kg;
(b) = Outlier at $1 \%$ significance;
(c) = Outlier at 5\% significance

### 7.3.2 Non-metallic certified analytes

Tab. 7.2: Summary of results of statistical evaluation

| Element run of evaluation program | $\mathrm{C}_{\text {total }}$ run 1 | $\mathrm{C}_{\text {total }}$ run 2 |
| :---: | :---: | :---: |
| Number of data sets | 19 | 17 |
| Total number of replicate measurements | 113 | 101 |
| Mean of means (a) | 29.835 | 29.894 |
| St. Dev of means (a) | 0.212 | 0.118 |
| Outlying or straggling mean values |  |  |
| - Dixon test | no | b, c |
| - Grubbs test (single and pair test) | b, c | c |
| - Nalimov t-test | b, c | b, c |
| Differences between labs statistically significant? <br> - Snedecor F-test | $b, c$ | $\mathrm{b}, \mathrm{c}$ |
| Outlying or straggling variances <br> - Cochran test | $b, c$ | $b, c$ |
| Variances homogeneous <br> - Bartlett test | no | no |
| St. Dev. within - laboratories (a) | 0.207 | 0.110 |
| St. Dev. between laboratories (a) | 0.113 | 0.106 |
| Half-width of the 95\% confidence interval (a) | 0.102 | 0.061 |

Abbreviations:
(a) = Expressed in \%;
(b) = Outlier at 1\% significance;
(c) = Outlier at 5\% significance

| Element run of evaluation program | $\begin{aligned} & \hline\left(\mathrm{C}_{\text {free }}\right) \\ & \text { run 1a } \end{aligned}$ | $\begin{aligned} & \hline\left(\mathrm{C}_{\text {free }}\right) \\ & \text { run } 1 \mathrm{~b} \end{aligned}$ | $\begin{gathered} \mathrm{C}_{\text {free }} \\ \text { run } 1 \mathrm{c} \end{gathered}$ | $\begin{gathered} \mathrm{O} \\ \text { run } 1 \end{gathered}$ | $\begin{gathered} \mathrm{O} \\ \text { run } 2 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Number of data sets | 14 | 10 | 4 | 12 | 11 |
| Total number of replicate measurements | 84 | 60 | 24 | 72 | 66 |
| Mean of means (a) | 519 | 530 | 493 | 930 | 909 |
| St. Dev of means (a) | 272 | 324 | 54 | 93 | 64 |
| Outlying or straggling mean values <br> - Dixon test | no | no | no | c | no |
| - Grubbs test (single and pair test) | no | no | no | c | no |
| - Nalimov t-test | c | no | c | b, c | c |
| Differences between labs statistically significant? <br> - Snedecor F-test | b, c |
| Outlying or straggling variances |  |  |  |  |  |
| - Cochran test | b, c | b, c | no | b, c | b, c |
| Variances homogeneous <br> - Bartlett test | no | no | b, c | no | no |
|  |  |  |  |  |  |
| St. Dev. within - laboratories (a) St. Dev. between laboratories (a) | 267 | 319 | 53 | 93 | 64 |
| St. Dev. between laboratories (a) | 121 | 142 | 24 | 24 | 24 |
| Half-width of the 95\% confidence interval (a) | 157 | 232 | 86 | 59 | 43 |

Abbreviations:
(a) = Expressed in $\mathrm{mg} / \mathrm{kg}$; (b) = Outlier at $1 \%$ significance; (c) = Outlier at $5 \%$ significance

### 7.3.3 Non-metallic indicative analytes

## Tab. 7.3: Summary of results of statistical evaluation



Abbreviations:
(a) = Expressed in mg/kg;
(b) = Outlier at $1 \%$ significance
(c) = Outlier at $5 \%$ significance

## 8 Calculation of certified and indicative values and their uncertainties

### 8.1 Mass fractions

The certified (or indicative) values of mass fractions of certified the considered elements were calculated as the mean values " $M$ " of all accepted means from the participating laboratories of the interlaboratory comparison (see 7.1, Tab. 5).

### 8.2 Uncertainties

The combined uncertainties of the certified mass fractions were calculated independently from the results of the homogeneity tests. But the basic values of further calculations (see
below) have been calculated in the context of the homogeneity investigations as described in paragraph 4.2 and as documented in detail in Appendix 5. These basic values are:
$s_{b} \quad=$ standard deviation of homogeneity investigation "between the bottles" (see APPENDIX 5) (note: it contains a contribution of the standard deviation of the analytical procedure used in homogeneity investigation)
$s_{w} \quad=$ standard deviation in homogeneity investigation "within the bottles" (see APPENDIX 5) (note: it contains a contribution of the standard deviation of the analytical procedure used in homogeneity investigation)
$S_{H S} \quad=$ standard deviation in homogeneity investigation of "homogeneous sample" (see APPENDIX 5). The value of $s_{H S}$ is assumed to represent the standard deviation of the analytical procedure used for the homogeneity investigation.

Following symbols and abbreviations are used additionally:
$u_{c} \quad=$ combined uncertainty of certified mass fraction according to GUM [1] and ISO Guide 35 [3]
$s_{M} \quad=$ standard deviation of the accepted laboratory mean values of interlaboratory comparison for certification (see Tab. 5)
$n \quad=$ number of accepted laboratory mean values of interlaboratory comparison for certification (see Tab. 5)
$s_{\text {inhom }}=$ standard deviation resulting from inhomogeneity of the samples
whereas

$$
\begin{equation*}
s_{\text {inhom }}=\sqrt{\left(s_{b}^{2}-s_{H S}^{2}\right)+\left(s_{w}^{2}-s_{H S}^{2}\right)} \tag{1}
\end{equation*}
$$

In equation (1) from each of the variances $s^{2}{ }_{b}$ (between the bottles) and $s^{2}{ }_{w}$ (within the bottles) the variance $s^{2} H s$ of the homogeneous sample (=the variance of the analytical procedure) was subtracted. Thus an effective contribution of the inhomogeneity (without the contribution of the analytical procedure) was calculated.

Instead of equation (1) equation (1a) is used, if a homogeneous sample was not measured:

$$
\begin{equation*}
s_{\text {inhom }}=\sqrt{s_{b}^{2}-s_{w}^{2}} \tag{1a}
\end{equation*}
$$

This follows the idea expressed in ISO guide 35 [3], that $\mathrm{s}_{\mathrm{w}}$ can be observed as representing the standard deviation of the analytical procedure. The combined uncertainty $u_{c}$ is calculated as the sum of two contributions, - on the one hand resulting from the interlaboratory comparison for certification - and on the other hand from inhomogeneity of the sample:

$$
\begin{equation*}
u_{c}=\sqrt{\frac{s_{M}^{2}}{n}+s_{i n h o m}^{2}} \tag{2}
\end{equation*}
$$

Equation (2) was used in all cases in which the variance representing the contribution of the inhomogeneity $s^{2}$ inhom was not less than the variance $u_{b b}^{2}$, representing the blind part of the variances (see [3]), which could be masked by the variance of the analytical procedure $s^{2} н s$, i. e. when

$$
\begin{equation*}
s^{2}{ }_{\text {inhom }}>u^{2}{ }_{b b}, \tag{3}
\end{equation*}
$$

whereas

$$
\begin{equation*}
u_{b b}=\sqrt{\frac{s_{H S}^{2}}{n_{H S}}} \cdot \sqrt[4]{\frac{2}{v_{s_{H S}^{2}}}} \tag{4}
\end{equation*}
$$

is valid, with
$n_{H S} \quad=$ number of parallel measurements at homogeneous sample,
$V_{s_{H S}^{2}}=$ degrees of freedom for calculation of $s^{2} H S$.

In cases when equation (3) was not valid, i. e. when

$$
\begin{equation*}
s_{i \text { inhom }}^{2} \leq u_{b b}^{2}, \tag{5}
\end{equation*}
$$

the following equation was used instead of equation (2):

$$
\begin{equation*}
u_{c}=\sqrt{\frac{s_{M}^{2}}{n}+u_{b b}^{2}} \tag{6}
\end{equation*}
$$

In this case the combined uncertainty is consisting of the contribution of the interlaboratory comparison for certification and of a contribution (4) explained below equation (2).

If no homogeneity measurements had been carried out, the combined uncertainty was simply calculated according to:

$$
\begin{equation*}
u_{c}=\sqrt{\frac{s_{M}^{2}}{n}} \tag{7}
\end{equation*}
$$

A contribution from an uncertainty caused by the possible aging of the material was not included, because no evidence was found, that a detectable aging of the material would occur before the date of expiry (see paragraph 5).

The expanded uncertainty "U" (coverage factor 2) of the certified mass fraction was calculated according to GUM as

$$
\begin{equation*}
U=2 u_{c} . \tag{8}
\end{equation*}
$$

The following equations were used for the calculation of the combined uncertainties of the different analytes :

- for Al, B, Cr, Cu, Fe, (Mn), Ni, Ti :
equation (2) combined with equation (1)
- for $\mathrm{C}_{\text {free }}, \mathrm{N}, \mathrm{O}, \mathrm{SiO}_{2 \text { free }}$ :
equation (2) combined with equation (1a)
- for Ca, Mg, $\mathrm{Na}, \mathrm{V}, \mathrm{C}_{\text {total }}$ :
- for $\mathrm{Si}_{\text {free }}$ :
equation (6) combined with equation (4)
equation (7)
The expanded uncertainties $U$ were calculated by using equation (8) (and by using a coverage factor of 2 ) in either case.


### 8.3 Certified values

Based on the calculations described in 8.1 and 8.2 the following values were certified:

| Element/ Constituent | Certified Values |  |  |
| :---: | :---: | :---: | :---: |
|  | Symbols | Mass fraction ${ }^{1)}$ in $\mathrm{mg} / \mathrm{kg}$ | $\begin{aligned} & \text { Uncertainty }^{2)} \\ & \text { in } \mathbf{~ m g} / \mathbf{k g} \end{aligned}$ |
| Aluminium | AI | 372 | 20 |
| Boron | B | 63 | 7 |
| Calcium | Ca | 29.4 | 1.8 |
| Chromium | Cr | 3.5 | 0.4 |
| Copper | Cu | 1.5 | 0.4 |
| Iron | Fe | 149 | 10 |
| Magnesium | Mg | 6.3 | 0.6 |
| Manganese | Mn | 1.44 | 0.17 |
| Sodium | Na | 17.7 | 0.8 |
| Nickel | Ni | 32.9 | 2.7 |
| Titanium | Ti | 79 | 4 |
| Vanadium | V | 41.4 | 2.8 |
| Zirconium | Zr | 25.2 | 2.0 |
| Free Carbon ${ }^{3)}$ | $\mathrm{C}_{\text {free }}$ | 493 | 79 |
| Oxygen ${ }^{5}$ | 0 | 910 | 35 |
|  |  | Mass fraction ${ }^{1)}$ in \% | $\begin{gathered} \text { Uncertainty }^{2)} \\ \text { in \% } \end{gathered}$ |
| Total Carbon ${ }^{4)}$ | $\mathrm{C}_{\text {total }}$ | 29.89 | 0.07 |

1) The certified values are the means of 4-22 series of results (depending on the parameter) obtained by different laboratories. 2 up to 8 different analytical methods were used for the measurement of one parameter. The calibrations of the methods applied for determination of element mass fractions were carried out by using pure substances of definite stoichiometry or by using solutions prepared from them, thus achieving traceability to SI unit.
2) The certified uncertainty is the expanded uncertainty estimated in accordance with the Guide to the Expression of Uncertainty in Measurements (GUM) with a coverage factor $k=2$. It includes contributions from sample inhomogeneity.
3) The mass fraction of carbon free is a method-depending value. It was determined by two different methods and is only related to the application of these methods, which are described as "Method M1" and "Method M2" respectively, attached to this certification report (see appendices 1 and 2 ).
4) The recommended "Method $M 3$ " described in attachment (appendix 3) can be used for the determination of mass fraction of carbon total.
5) The recommended "Method M4" described in attachment (appendix 4) can be used for the determination of mass fraction of oxygen.

### 8.4 Indicative values

The following not certified indicative values were also determined by using results of interlaboratory comparison and of calculations as described in 8.1 and 8.2.

| Parameter | Indicative Values |  |
| :---: | :---: | :---: |
|  | Mass fraction ${ }^{\mathbf{1}}$ <br> in mg/kg | Uncertainty $^{2)}$ <br> in mg/kg |
| Nitrogen | 93 | 22 |
| Silicon dioxide free | 600 | 148 |
| Silicon free | 481 | 223 |

1) The indicative values are the means of 6-11 series of results (depending on the parameter) obtained by different laboratories. 1 up to 4 different analytical methods were used for the measurement of one parameter. The methods applied for determination of mass fractions were not always carried out by using pure substances of definite stoichiometry or by using solutions prepared from them, thus was not achieved traceability to SI units.
2) The uncertainty is the expanded uncertainty estimated in accordance with the Guide to the Expression of Uncertainty in Measurements (GUM) with a coverage factor $k=2$.

### 8.5 Additional material data

Additional material properties were determined by using one method, and can be used as informative values, only.

| Parameter |  | Additional Material Data |  |
| :---: | :---: | :---: | :---: |
|  |  | mass fraction in \% | Uncertainty |
| Phases: | SiC-6H | $89.2{ }^{1)}$ | $0.2{ }^{2 /}$ |
|  | SiC-15R | $6.1^{11}$ | $0.2{ }^{2 /}$ |
|  | SiC-4H | $4.7{ }^{11}$ | $0.2^{2)}$ |
| Parameters of particle size |  | Particle size in $\mu \mathrm{m}$ |  |
|  | $\mathrm{D}_{10}$ | $5.55{ }^{3}$ |  |
|  | $\mathrm{D}_{50}$ | $10.18^{3 /}$ |  |
|  | $\mathrm{D}_{90}$ | $16.69{ }^{3}$ |  |
| 1) The measurements were carried out by $X$-ray powder diffraction using Rietveld method for evaluation. <br> 2) The calculation of the standard uncertainty is based on a raw estimation from the evaluation of the Rietveld method. <br> 3) The particle size distribution was determined by laser light diffraction method. |  |  |  |
|  |  |  |  |

## 9 Instructions for use <br> 9.1 Area of application

The main area of application is checking the trueness of results when one or more of the certified parameters in silicon carbide material are determined by a laboratory. Based on own results and on certified values the uncertainty of own measurements can be calculated. The material can also be used for checking the trueness of the determination of the total carbon content in other refractory materials having similar carbon mass fractions.

### 9.2 Recommendations for correct sampling and sample preparation

To ensure a representative sub-sampling for the analysis the bottle containing the CRM should be shaken in different directions for about two minutes before taking the sub-sample.

Each sub-sample has to be taken separately. According to the different sub-sample masses for the homogeneity testing different minimum sub-sample masses are specified for different analytes (in paranthesis /mg): Al, Ca, $\mathrm{Fe}, \mathrm{Mg}, \mathrm{Ni}, \mathrm{Ti}, \mathrm{Zr}(8)$; $\mathrm{Cr}, \mathrm{Cu}, \mathrm{V}(14)$; $\mathrm{B}(500) ; \mathrm{C}_{\text {total }}(25)$; $\mathrm{C}_{\text {free }}(500)$; $\mathrm{O}(80)$. The opening duration of the bottle should be as short as possible. The lid of the bottle containing a special sealing gasket should be locked tightly immediately after usage. Sample preparation for the determination of the analyte boron has to be carried out by using fusion technique with sodium peroxide followed by an extraction to avoid losses. For subsequent elemental analysis the sample has to be treated thermally at $(135 \pm 5){ }^{\circ} \mathrm{C}$ for 12 hours to achieve defined starting conditions. For the determination of metallic analytes, the required pressure digestion has to be verified concerning absence of analyte losses.

### 9.3 Recommendations for correct storage

The sample should be stored in a dust-free and dry environment avoiding contamination and moisture.

### 9.4 Expiration of certification

The date of expiry of certification is ten years after the date of certification. Before this date a new certificate will be prepared with a new date of expiry.

### 9.5 Safety guidelines

1. First aid measures

In the event of contact with the skin, rinse off with water and soap. Contamination of the eyes must be treated by thorough irrigation with water, with the eyelids held open.
If product is swallowed, induce vomiting and consult a physician. The product is not known to be toxic.
2. Accidental release measures

Precautionary measures regarding persons: Avoid formation and deposition of dust. Ensure effective ventilation.
Methods for cleaning up / taking up: Take up mechanically; avoid dust formation. Fill into labelled, sealable containers.
3. Handling

Avoid formation and deposition of dust. Ensure adequate ventilation and if necessary, exhaust ventilation when handling or transferring the product.
4. Exposure restriction and personal protection

Respiratory protection: If necessary use a respirator mask with filter typ $P$ according to DIN EN 143
Hand protection: protective gloves
Eye protection: protective goggles
5. Limit values of dust concentration in air to be monitored

Regulatory instructions concerning limit values of concentration of different particle size are to be maintained.
6. Disposal considerations

Unused material: reuse if possible. Address manufacturer.
Or: May be disposed of in approved special landfills provided local regulations are observed.

## 10 References

[1] Guide to the Expression of Uncertainty in measurement (1995) International Organization for Standardization ISBN 92-67-10188-9
[2] G. Bonas, M. Zervou, T. Papaeoannou and M. Lees "SoftCRM": a new software for the Certification of Reference Materials Accred Qual Assur, 8 (2003) 101-107
[3] ISO Guide 35 - Certification of reference materials - General and statistical principles ( $3^{\text {rd }}$ edition, draft)

## 11 Regulatory information

ANSI American National Standards Institute, Methods of chemical analysis of silicon carbide abrasive grain and abrasive crude, ANSI B74.15-1992, ANSI American National Standards Institute, 1992, pp. 20

- DIN, ISO 51079-1, Prüfung keramischer Roh- und Werkstoffe, Chemische Analyse von Siliciumcarbid als Rohstoff und als Bestandteil von Werkstoffen, Teil 1 Soda-BorsäureAufschluss
- DIN, ISO 51079-2, Prüfung keramischer Roh- und Werkstoffe, Chemische Analyse von Siliciumcarbid als Rohstoff und als Bestandteil von Werkstoffen, Teil 2 Säure-DruckAufschluss
- DIN, ISO 51079-3, Prüfung keramischer Roh- und Werkstoffe, Chemische Analyse von Siliciumcarbid als Rohstoff und als Bestandteil von Werkstoffen, Teil 3 Aufschluß des freien Kohlenstoffs durch naßchemische Oxidation
- DIN, ISO, 51075-1-5, Prüfung keramischer Roh- und Werkstoffe, Chemische Analyse von Siliciumcarbid, Teil 1-5
- FEPA (Féderation Européenne des Fabricants de Produits Abrasifs), Chemische Analyse von Siliciumcarbid, FEPA-Standard 45-D-1986, Fachverband Elektrokorundund Siliziumkarbid-Hersteller e.V., Verein Deutscher Schleifmittelwerke e.V., 1986, 1-25


## 12 Informative references

- Kato, K.; "Atomic absorption spectrophotometric determination of total silicon in silicon carbide" in: Atomic Absorption Newsletter 15 (1976) 4-6
- Schwetz, K. A., Hassler, J.; "A wet chemical method for the determination of free carbon in boron carbide, silicon carbide and mixtures thereof" in: J. of the Less-Common Metals, Elsevier Sequoia/Netherlands, 117 (1986) 7-15
- Hunold, H., Reh, H.; "Die Hochleistungskeramik. II. Die Werkstoffe: Siliciumcarbid (SiC), ein alter Bekannter" in: Keramische Zeitschrift, (1987) 521-525
- Kriegesmann, J.; "Die Technologien der modernen Siliciumcarbidkeramiken, Teil I: Rohstoff und Formgebung" Keramische Zeitschrift (1988) 857-863
- Kriegesmann, J.; "Die Technologie der modernen Siliciumcarbidkeramiken Teil III: Eigenschaften" in: Keramische Zeitschrift (1989) 17-22
- "JIS Japanese Industrial Standard, Method for chemical analysis of silicon carbide abrasives" in: JIS R 6124-1987, Japanese Standards Association, Tokyo, Japan, (1989) 1-51
- Broekaert, J. A. C., Graule, T., Jenett, H., Tölg, G., Tschöpel P.; "Analysis of advanced ceramics and their basis products" in: Fresenius Z. Anal. Chem. 332 (1989) 825-838
- Graule, T., Tschöpel, P.; "Analyse von hochreinen Keramikpulvern und Sinterkörpern mit der optischen Emissions- (OES) und der Atomabsoprtionsspektrometrie" in: cfi/Ber.DKG 68 No. 1/2 (1991) 5-9
- Roßberg, A., Otto, K., Matthe, P.; "Analysenmodell zur Bestimmung von freiem Kohlenstoff in feindispersen SiC-Pulvern in Gegenwart von freiem Silizium" in: cfi/Ber. DKG 69 No. 7/8 (1992) 251-254
- Docekal, B., Broekaert, J. A. C., Graule, T., Tschöpel, P., Tölg, G.; "Determination of impurities in silicon carbide powders" in: Fresenius J. Anal. Chem., $\underline{342}$ (1992) 113-117
- Záray, G., Leis, F., Kántor, T., Hassler, J., Tölg, G.; "Analysis of silicon carbide powder by ETV-ICP AES" in: Fresenius J Anal Chem, 346 (1993) 1042-1046
- Csato, I., Zaray, Gy., Gal-Solymos, K., Hassler, J.; "Direct analysis of silicon carbide powder by total reflection X-ray Fluorescence Spectrometry" in: Applied Spectroscopy 51 No. 7 (1997) 1067-1072
- Schäffer, U., Krivan, V.; "Multielement analysis of graphite and silicon carbide by inductively coupled plasma atomic emission spectrometry using solid sampling and electrothermal vaporisation" in: Anal. Chem. 71 No. 4 (1999) 849-854
- Hassler, J., Förster, O.; Schwetz, K. A.; "Moderne chemische Analysenverfahren von keramischen Werkstoffen" cfi/Ber. DKG $\underline{77}$ No. 7 (2000) D11-17
- Schwetz, K. A.; "Silicon carbide based hard materials" in: Handbook of Ceramic Hard Materials, R. Riedel (Ed.), Vol 2 Wiley-VCH, Weinheim, N.Y., (2000) 683-748


## 13 . Appendices

- Appendix 1: Method M1: Coulometric determination of free carbon ( $\mathrm{C}_{\text {free }}$ ) in silicon carbide after wet-chemical oxidation with hot chromic-sulfuric acid
- Appendix 2: Method M2: Coulometric determination of free carbon content ( $\mathrm{C}_{\text {free }}$ ) in silicon carbide comprising weighing-back the sample boat
- Appendix 3: Method M3: Proposed method for determination of total carbon mass fraction in silicon carbide powder
- Appendix 4: Method M4: Proposed Method for the determination of oxygen and nitrogen mass fraction in silicon carbide powder
- Appendix 5: Homogeneity investigations of the CRM-candidate material „Silicon Carbide Powder 1" (SiC green micro F800)
- Appendix 6: Compilation of sample preparation procedures, calibrations and methods for final determination used in interlaboratory comparison for certification of CRM BAMS003
- Appendix 7: Statistical evaluation of all results of interlaboratory comparison for certification of CRM BAM-S003
- Appendix 8: Additional information to the Grubbs test carried out for the interlaboratory comparison for the certification of CRM BAM-S003


# Coulometric determination of free carbon ( $\mathrm{C}_{\text {free }}$ ) in silicon carbide after wet-chemical oxidation with hot chromic-sulfuric acid 

According to Dr. Jürgen Haßler, Wacker-Chemie GmbH, Max-Schaidhauf-Str. 25 D-87437 Kempten, Germany

## Purpose:

$\mathrm{C}_{\text {free }}$-determination in silicon carbide by wet chemical oxidation and coulometric detection

## Scope:

The method is applicable preferably to very fine grain powders (grain size less than $10 \mu \mathrm{~m}$ ) or low contents of free carbon (less than $0.2 \%$ mass fraction) as well as if there are evaporable and/or easy oxidize components in the analyzed silicon carbon. The method releases organic carbon and carbonate carbon, too (as $\mathrm{CO}_{2}$ ).
The method is applicable to free carbon mass fractions of $0.01 \%$ to $5 \%$. At higher concentrations incomplete recovery is possible. The method is not applicable to samples containing compounds which could adulterate the result (e.g. $\mathrm{B}_{4} \mathrm{C}$ ).

## Principle

The free carbon of the sample is oxidized to carbon dioxide by of chromic sulfuric iodic acid at a temperature of $120^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$. The inert gas carries the $\mathrm{CO}_{2}$ to the coulometric detection system.
SiC does not react under these conditions, or only to a neglegible amount in case of very fine powders.

## Apparatus

In addition to standard laboratory equipment, the following apparatus shall be used.

Coulometric detection system for determination of carbon mass fraction (e.g. coulometric system of_"Coulomat 702", Ströhlein, Germany)
Analytical balance,
precision $\pm 0,05 \mathrm{mg}$
Aluminium heating-block with tempera-
ture control to $130^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
Reaction vessel, with cooling device and drying trap (figure 1)
Aluminium capsules, e.g. $\varnothing 6 \mathrm{~mm}$,
L 15 mm , prepared from aluminium foil (carbon free)
External PC and plotter/printer


Fig.1: Aluminium heating block with reaction vessel

## Reagents and auxiliary means

All reagents must be of known analytical grade. The used water shall be distilled water or water which has been fully demineralized by ion exchange (deionized water). Unless otherwise specified, solutions are aqueous solutions.
Calcium carbonate; $\mathrm{CaCO}_{3}$ ( dried $2 \mathrm{~h} / 285^{\circ} \mathrm{C}$ )
Barium carbonate; $\mathrm{BaCO}_{3}$
Barium perchlorate; $\mathrm{Ba}\left(\mathrm{ClO}_{4}\right)_{2}$,
$\mathrm{Ba}\left(\mathrm{ClO}_{4}\right)_{2}$-solution; $20 \%$ (mass\%) in $\mathrm{H}_{2} \mathrm{O}$
Sodium dichromate; $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \times 2 \mathrm{H}_{2} \mathrm{O}$
Potassium iodate; $\mathrm{KIO}_{3}$
Sulfuric acid $\mathrm{H}_{2} \mathrm{SO}_{4} ; \rho=1,84 \mathrm{~g} / \mathrm{ml}$
Argon; Ar, 99,998 \% pure
Chromic sulfuric acid solution: prepared by dissolving 22 g of sodium
dichromate in $300 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$, and adding 700 ml sulfuric acid.
The solution is heated for 30 min at $150{ }^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$. After cooling the solution is stored in a glass bottle.
Little porcelain boats, not glazed
Aluminium capsules, made from aluminium foil free of carbon

## Procedure

If the total dryness of sample is not assured, the sample has to be dried at $120^{\circ} \mathrm{C} \pm$ $5^{\circ} \mathrm{C}$ for 2 hours and should be stored after cooling down in a dry surrounding (e.g. desiccator). Samples of higher grain size have to be milled to grain size $\leq 53 \mu \mathrm{~m}$ (e.g. in a steel mortar).
Use test assembly in accordance with the operating instructions.
Adjust the temperature of the heating block to $120^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$.
Weigh ca. $0.5 \mathrm{~g} \mathrm{KIO}_{3}$ into the reaction vessel and pipette 30 ml of chromic sulfuric acid to it.
Insert the reaction vessel into the heating block and connect it via cooler tightly with the coulometric detection system and adjust the carrier gas with a surplus of carrier gas and a pressure compensation.
To control the tightness of the system, run a Ar-blank of about 5 min to 10 min after a heating time of 20 min .
Weigh, depending on the sample material and the expected content of free carbon $20 \mathrm{mg}-150 \mathrm{mg}$ to the nearest $0,01 \mathrm{mg}$ into an aluminium capsule.
Close the capsule with tweezers. After the chromic sulfuric acid has reached a temperature of $120^{\circ} \mathrm{C}$, put the capsule in the sample insertion device in the reaction vessel and drop it into the hot acid. When the sample drops into the acid, switch on the measuring mode of the detection unit.
The total reaction time is about 60 min . The detection time depends on the chosen detection system.

## Evaluation and calculation of $\mathrm{C}_{\text {free }}$ content

The evaluation is made graphically, counts (ordinate) versus time (abscissa). Usually coulometric systems record add up counts for a specific time interval. Therefore it is not possible to draw running counts versus time or its first derivative.
Using a suitable interface, a measuring curve can be recorded by PC and printed out via plotter or printer.

Graphical evaluation by hand:
The slow and constant slope in the second part of the $\mathrm{CO}_{2}$-reaction curve (system blank and negligible amount of $\mathrm{C}_{\mathrm{sic}}$ ) is to be lengthened to the ordinate.
The ordinate is to shift ca. one minute before the sharp rise of the counts (moment of destruction of capsule and the start of reaction).
The stretch between the intersections of the lengthened constant line and the measuring curve (on the lower end) with the shifted ordinate corresponds to $\mathrm{C}_{\text {free }}$ oxidized by the hot chromic sulphuric acid attack.

The free carbon content, $\mathrm{C}_{\text {free }}$ shall be calculated as a percentage by mass, to the nearest $0.01 \%$ using the following equation:

$$
\% \mathrm{C}_{\text {free }}=\frac{I * f}{m_{E}} * 100
$$

I number of counts found for the sample by graphical evaluation
$\mathrm{f} \quad$ conversion factor count $\rightarrow \mathrm{mg} \mathrm{C}(=0.0002)$
$\mathrm{m}_{\mathrm{E}} \quad$ sample mass, in mg

## Precision:

The reproducibility of the method is: $\sigma= \pm 0.01 \%$ at a mass fraction of $0.05-0.50 \%$ $\mathrm{C}_{\text {free }}$

## Calibration:

Coulometry is an absolute method.
Use $\mathrm{CaCO}_{3}$ for checking up the method and for testing assembly. The difference from theoretical value ( $12.00 \%$ ) shall be max. $\pm 0.05 \%$ (absolute).
The check up is carried out daily before use.

## References:

Operating instructions, Coulomat, Fa. Ströhlein
K.A.Schwetz, J.Haßler : A wet chemical method for the Determination of free carbon in boron carbide, silicon carbide and mixtures thereof, J. of the Less-Common Metals 117, 7-15 (1986)
DIN 51079-3 Chemische Analyse von Siliciumcarbid als Rohstoff und als Bestandteil von Werkstoffen
Teil 3: Aufschluss des Freien Kohlenstoffs durch nasschemische Oxidation Norm-Entwurf Okt 1997

# Coulometric determination of free carbon content ( $\mathrm{C}_{\text {free }}$ ) in Silicon Carbide comprising weighing-back the sample boat <br> According to Dr. Jürgen Haßler, Wacker-Chemie GmbH, Max-Schaidhauf-Str. 25 D-87437 Kempten, Germany 

## Purpose:

Indirect $\mathrm{C}_{\text {free }}$-determination by weighing-back the combustion boat after direct $\mathrm{C}_{\text {free }}{ }^{-}$ determination

## Scope:

To be used for SiC-powder and grains
Remark:
This method of $\mathrm{C}_{\text {free }}$-determination is usable for SiC powder or grains with high proportion of fine particles (grain size $<10 \mu \mathrm{~m}$ ), material containing detectable quantities of $\beta-\mathrm{SiC}$ and/or material containing more than $2 \%$ free carbon.

## Principle:

Combustion of the free carbon in oxygen gas flow at $850^{\circ} \mathrm{C}$ followed by coulometric determination of the released carbon dioxide. The method takes into account the oxidation of silicon carbide during the combustion of the free carbon by weighing-back the sample boat (possible side reaction: $\mathrm{SiC} \rightarrow \mathrm{SiO}_{2}+\mathrm{CO}_{2} \uparrow$ ) after combustion. Comment 1:
This method is not usable if volatile components, carbonates and/or combustible impurities, such as, $\mathrm{Fe}_{\text {met }}, \mathrm{Si}_{\text {met }}$ or $\mathrm{B}_{\text {met }}$ are contained in the sample, which can cause a significant change in weight ("met" stands for "metallic").
Comment 2:
The method is a combination of methods described in DIN 51075 "Chemical analysis of silicon carbide", part 2, "Direct determination of free carbon" and in DIN 51075, part 5 "Indirect determination of free carbon content in silicon carbide".

## Apparatus:

In addition to standard laboratory apparatus shall be used:
Apparatus for determination of carbon content consisting in a resistance heated tube furnace combined with a coulometric detection system (e.g. "Coulomat 702", Ströhlein, Germany). The resistance heated furnace is equipped with ceramic tube and adjustable at $(900 \pm 10)^{\circ} \mathrm{C}$.
Open combustion boats of unglazed ceramic material. Before use, the boats have to be heated in a laboratory furnace at $(1050 \pm 25)^{\circ} \mathrm{C}$ for 1 hour.

## Reagents:

The following reagents of high purity shall be used.
Calcium carbonate; $\mathrm{CaCO}_{3}$ ( dried $2 \mathrm{~h} / 285^{\circ} \mathrm{C}$ ),
Barium carbonate; $\mathrm{BaCO}_{3}$
Barium perchlorate; $\mathrm{Ba}\left(\mathrm{ClO}_{4}\right)_{2}$
Absorbing-solution, dissolve about 200 g of high purity barium perchlorate, $\mathrm{Ba}\left(\mathrm{ClO}_{4}\right)_{2}$ in distilled or deionized water and fill up to one litre.
Oxygen, $\mathrm{O}_{2}$ : $99.99 \%$

## Procedure:

Use test assembly in accordance with the operating instructions.
Adjust the oxygen flow rate so that there is no risk of air being sucked in from outside. The measurement is carried out without splitting of gas flows.
A few reference samples of known carbon contend shall be analyzed before running the analytical sample.
Prior to series of analyses, the blank value shall be determined (with no gas volume reduction) using a precalcined boat.
Weigh to the nearest 0.01 mg , about $(100-300) \mathrm{mg}$ of the dried sample (dried at $120^{\circ} \mathrm{C} 1 \mathrm{~h}$ ) into a boat from which any carbon present has previously been removed by calcination. The mass of sample boat and the mass of sample boat plus sample (difference $=$ weighed portion SiC ) are recorded in writing.
Place the boat into the heating zone of the furnace preheated to a temperature of $(850 \pm 10)^{\circ} \mathrm{C}$ and start the measurement.
At the above temperature, the determination of free carbon takes 10 minutes. During this time the combustion gases are led to the coulometric detection system, where the coulometric current is registered and displayed.
After closing the measurement and removing the sample boat from the furnace, cool down to room temperature and weigh back the sample boat including annealed sample nearest 0.01 mg .
Remark:
If the free carbon content is particularly high, the volume of the combustion gas can be reduced to one-tenth (1/10 gas division) using dosing pump.

## Evaluation:

The content of free carbon ( $\mathrm{C}_{\text {free }}$ ) is calculated by counting the mass of additionally oxidized part of SiC .
In case of using the "Coulomat 702" the following calculation is carried out (in analogous way for other instruments):
One count corresponds to $3.212 \times 10^{3}$ Coulomb or $2 \times 10^{-4} \mathrm{mg} \mathrm{C}$, respectively (at normal division).
The free carbon content $\mathrm{C}_{\text {free }}$ is calculated as a percentage by mass, to the nearest 0.01 \% using the following equation:

$$
C_{\text {free }}=\frac{0.6255 * C+0.3754 *\left(m_{1}-m_{2}\right)}{m_{\text {SiC }}} * 100
$$

$\mathrm{C}=$ mass of carbon [mg]; determined at a temperature of $(850 \pm 10)^{\circ} \mathrm{C}$ and measuring time of about 10 min .

```
C = (I-I') •f
I = number of counts found for the sample
I' =number of counts in the blank value determination (mean of three repeats)
f}=\mathrm{ conversion factor count }->\textrm{mg C (0.0002)
m
m
msic = sample mass (mg)
```

The factors used in the equations are to be calculated using the relative molar masses as follows:
$1.6009=\frac{\frac{\mathrm{SiO}_{2}-\mathrm{SiC}}{\mathrm{C}}+1}{\frac{\mathrm{SiO}-\mathrm{SiC}}{C}}$
$2.6641=\frac{\mathrm{SiO}_{2}-\mathrm{SiC}}{\mathrm{C}}+1$
$0.6255=\frac{1}{1.6009}$

$$
0.3764=\frac{1}{2.6641}
$$

## Precision:

The reproducibility of the method is: $\quad \sigma= \pm 0.01 \%$ at $0.05-0.50 \% \mathrm{C}_{\text {free }}$ mass fraction.

## Calibration:

Use $\mathrm{CaCO}_{3}$ for check up the method and test assembly. The difference from theoretical value ( $12.00 \%$ ) should be max. $\pm 0.05 \%$ (absolute).
The check up is carried out daily before use.

## References:

DIN 51075 Chemical analysis of silicon carbide
Operating instructions, Coulomat 702, (Ströhlein, Germany) or other instruments.

## Recommended method for determination of total carbon mass fraction in silicon carbide powder

Prepared by Albrecht Meyer, Max-Planck-Institut für Metallforschung, Heisenbergstraße 3, D-70569 Stuttgart, Germany Revised by Dr. Wolfgang Gruner, Leibniz-Institut für Festkörper- u. Werkstoffforschung, Postfach 270116, D-01171 Dresden, Germany

## Method

Oxidation in pure oxygen followed by IR-detection; $\left(\mathrm{CO}_{2}\right)$-"Combustion method"

## Preparation of measurement

- Use ceramic crucible with lid (11 mm hole). Anneal in muffle furnace at $1100^{\circ} \mathrm{C}$ for 8 hours in air; store in desiccator; anneal once more in a tube furnace at $1100^{\circ} \mathrm{C}$ in oxygen (or air) for a short time before use.
- Use purified Ni-capsules (purified with acetone in an ultrasonic bath) dried by a hair dryer.
- Use a weighed sub-sample of 25 mg (using semi-micro balance). The subsample mass depends on the size of Ni capsules used.
- Seal the capsule with a tong.
- Put the capsule into the crucible together with 0.5 g Fe (for reduction of carbon blank value in the iron material, the iron is heated at $950^{\circ} \mathrm{C}$ for 10 hours in an Ar stream before) and 1 g W as flux (sequence of putting into the crucible: Fe, sub-sample, W)


## Measurement

- Put the crucible with the holed lid into the high frequency induction furnace and start the heating and the measurement cycle.
- Choose the duration of reaction to assure a total release of carbon. (Attention, it is a parameter strongly depending on the analytical instrument! A typical time is about 60 sec .)


## Calibration

It is not allowed to use a certified matrix-reference material (such as steel). Use spectrographically pure graphite, a glassy carbon or powder of $\mathrm{CaCO}_{3}$ introduced to Ni -capsules for calibration. In calibrating procedure a good signal adaptation is achieved with about 8 mg C or with an according mass of a (primary) pure substance such as $\mathrm{CaCO}_{3}$.

## Recommended method for the determination of oxygen and nitrogen mass fraction in silicon carbide powder

According to Dr. Wolfgang Gruner, Leibniz-Institut für Festkörper- u. Werkstoffforschung, Postfach 270116, D-01171 Dresden, Germany

## Method

Carrier gas hot extraction in inert gas atmosphere $(\mathrm{He})$ with infra-red detection $\left(\mathrm{CO}_{2}\right)$ and heat conductivity measurement $\left(\mathrm{N}_{2}\right)$

## Preparation of measurement

- use pre-cleaned Ni-capsules (acetone or trichloroethylene; ultra sonic bath; dried by hair dryer)
- use a sub-sample mass dependent on capsule geometry (e.g. $\varnothing 7 \times 10 \mathrm{~mm}$ ) about $25-100 \mathrm{mg}$ using semi-micro balance; carefully close capsule using tong; press capsule using a hand press; weigh back for control, if necessary


## Measurement

Resistance heating oven; high temperature graphite crucibles; measurement modus - IMPULS; gas outlet and reaction temperature (usually equivalent to heating power POWER) are chosen in order to achieve a complete deliberation of the analytes (Attention: Instrument specific parameter (e.g. $5000 \mathrm{~W} / 70 \mathrm{sec}$ when using LECO TC436 with EF 500)!)

## Calibration

The detector is calibrated using (primary) pure substances (e.g. $\mathrm{CO}_{2}, \mathrm{~N}_{2}, \mathrm{KNO}_{3}$ ). Note, that this does not necessarily guarantee a complete deliberation of the analyte. In case of using solutions of salts (e.g. solution of $\mathrm{KNO}_{3}$ ) dry the solution in the Ni -capsule slowly
gas dose calibration for $N$ is very critical, since the signal intensity ratio from sample and gas dose is about 1:100 $\left(\mathrm{N}_{2}\right)$ and for O still about 1:20 $\left(\mathrm{CO}_{2}\right)$

## Appendix 5

## Homogeneity investigations of the CRM-candidate material „Silicon Carbide Powder 1" (SiC green micro F800)

## Selection of samples for homogeneity testing

For the homogeneity testing 20 bottles were representatively taken from the totality of 320 bottles by a combination of random access and systematic selection. Each bottle contained 50 g of candidate material. From each of the $\mathrm{N}=20$ bottles four appropriate sample masses were filled into vials ("larger sub-samples") with masses of the taken material depending on the needs of the corresponding methods used for the homogeneity testing of different analytes.
The vials were distributed to the laboratories, where the measurements for homogeneity testing were carried out. For comparison a thoroughly homogenized sample was produced. For this purpose - 20 g of the material were highly homogenized in the "Mixer/Mill" (Spex. Ind., USA) for 15 min . $3 \times 5 \mathrm{~min}$.) using polypropylene vessels and balls.
Partial masses of this sample were distributed to the laboratories, in which the measurements for homogeneity testing were carried out.

## Metallic analytes (without Na )

The measurements were carried out by ESK, Kempten (now: Wacker Ceramics, Kempten). An ICP OES spectrometer "IRIS-AP" (Thermo Elemental) was used in combination with electrothermal evaporation (ETV) for the analysis of sub-samples. In house carbide powders with known trace elemental contents and in some cases aliquots of calibration solutions were used for calibration. Resulting lack of trueness of results or of metrological traceability are not relevant, because a high precision is the only necessity in case of homogeneity investigation. A real problem is the small sub-sample mass used with ETV ICP OES. A sub-sample mass of about 2 mg could only be applied. This is much less than normally used in wet chemical analysis and is not very representative for the entire sample. On the other hand it is possible to summarize some of the measurements to one result, thus summarizing the sub-sample masses to a virtual value representing a higher sub-sample mass. This procedure was followed, though more practical work is involved for measurements.

For the elements $\mathrm{Al}, \mathrm{Ca}, \mathrm{Fe}, \mathrm{Mg}, \mathrm{Ni}, \mathrm{Ti}$ and Zr four series of measurements were carried out at different days and seven series for the elements $\mathrm{Cr}, \mathrm{Cu}$ and V . Because of the very similar distribution of Cr and Mn in the samples, as known from former studies, Mn was not measured and the results for Cr in the homogeneity test were applied for Mn , too. The results
of the measurement and the homogeneity testing are listed in the subsequent tables. They are classified by elements, each element filling 4 pages. On the first three pages all results are arranged, which were received from the measurements of the real small sub-samples (each was taken from one of the 4 larger sub-samples in the vials which had been representatively taken from the 20 selected bottles). They were given the "sample-number" " $x / y$ ", with " $x$ " = number of selected bottle and " $y$ " = number of the larger sub-sample vial from this bottle $(y=1 \ldots M)$ with $(M=4)$. The number " $x / y$ " is to find in the second column of the table. In the following 4 or 7 columns, respectively, depending on the element, the single results by ETV ICP OES measurements are listed, each being calculated as mean from two different spectral lines and using sub-samples of 2 mg taken from the corresponding vials of larger sub-samples. In the following column the mean values of all the four or seven measurements for one larger sub-sample (one number " $x / y$ ") are tabulated. These mean values represent the actual initial values of the homogeneity testing (marking: "mean") for virtual sub-sample masses of $4 \times 2=8 \mathrm{mg}$ or $7 \times 2=14 \mathrm{mg}$, respectively. In the subsequent column the mean of the 4 sub-sample values are tabulated; the next column contains the SD (standard deviation) of sub-samples. The values are the basis for the calculation of the "within bottle standard deviation" by quadratic averaging. The last column contains informative values of the corresponding RSD (relative standard deviation).

On the third page some results are summarized:
$M_{S s}$ is the mean of means of the sub-samples and $S D_{\text {of mean of sub-samples }}$ is the corresponding standard deviation. This value represents the deviation between the bottles. The value below is the corresponding RSD, which is not used for further calculation, the same holds true for the mean of the RSDs within the bottles "mean $R S D_{w}$ ".

Three tables are arranged on each one of the last page for an element. The one at the head contains the results of the measurements of the highly homogenized sample. $\mathrm{K}=20$ different sub-samples of the homogenized sample were analysed on 4 or 7 days, respectively. The mean values of the measurements from the different days are listed in the last column. Below this table the mean value of all 20 sub-samples $M_{H S}$ is specified, together with the corresponding standard deviation $\mathrm{SD}_{\mathrm{HS}}$ and the relative standard deviation $\mathrm{RSD}_{\mathrm{HS}}$.

Below these data two tables are arranged for homogeneity testing
One homogeneity test (Anova, F-test) was made for comparing variances "between the bottles" and "within the bottles" (instead of "bottles" here was written "samples").

It contains the averaged standard deviation within the samples

$$
\mathrm{s}_{\mathrm{w}}=\sqrt{\sum_{1}^{20} \mathrm{SD}_{\mathrm{i} \text { sub-sample }}^{2} / \mathrm{N}} ; \quad \mathrm{N}=20
$$

and the standard deviation between the samples (calculated for single determinations)

$$
\mathrm{s}_{\mathrm{b}}=\sqrt{\mathrm{SD}_{\text {means of sub-samples }}^{2} \times \mathrm{M}} ; \quad(\mathrm{M}=4)
$$

furthermore the test value

$$
\mathrm{s}_{\mathrm{b}}^{2} / \mathrm{s}_{\mathrm{w}}^{2}
$$

and the critical value of the F-table

$$
\mathrm{F}_{\text {value }}=\mathrm{F}_{\alpha ; \mathrm{N}-1 ; \mathrm{N} \times(\mathrm{M}-1)}=\mathrm{F}_{0,05 ; 19 ; 60}
$$

The "characteristic number" for the homogeneity testing between the samples is

$$
\left(\mathrm{s}_{\mathrm{b}}^{2} / \mathrm{s}_{\mathrm{w}}^{2}\right) / \mathrm{F}_{\text {value }} .
$$

If this "characteristic number" is $\leq 1$, there is no reason to assume, that the distribution between the bottles is less homogeneous than within the bottles. For a value > 1 a less homogeneous distribution of sub-sample amounts between the bottles than within the bottles must be concluded (= "inhomogeneity between the bottles"). The extent of the "characteristic number" corresponds to the level of "inhomogeneity between the bottles".

The other table bottom of page 4 is for homogeneity testing (F-test) within the samples. Here the standard deviation of the homogeneous sample $\mathrm{s}_{\mathrm{HS}}$ is compared with the standard deviation within $\mathrm{s}_{\mathrm{w}}$ the samples. This

$$
\text { test value }=\mathrm{s}_{\mathrm{w}}^{2} / \mathrm{s}_{\mathrm{HS}}^{2}
$$

is compared with the critical value of the F-test-table.

$$
\mathrm{F}_{\text {value }}=\mathrm{F}_{\alpha ; \mathrm{N} \times(\mathrm{M}-1) ; \mathrm{K}-1}=\mathrm{F}_{0,05 ; 60 ; 19}
$$

The resulting characteristic number within the bottles is

$$
\left(\mathrm{s}_{\mathrm{w}}^{2} / \mathrm{s}_{\mathrm{HS}}^{2}\right) / \mathrm{F}_{\text {value }}
$$

If this "characteristic number" is $\leq 1$ then there is no reason to assume that the distribution within the samples is less homogeneous than in the homogenized sample. Ideally the distribution in the homogenized sample is totally homogeneous - in this case $\mathrm{S}_{\mathrm{HS}}$ stands for the standard deviation of the applied analytical procedure, alone.
It can be concluded from the F-tests ("between" and "within") that for all 10 investigated elements no significant contribution to an inhomogeneity "between the bottles" could be found. A significant inhomogeneity contribution "within the bottles" was only found for the elements $\mathrm{Cu}, \mathrm{Fe}$ and Zr . The material can be classified as sufficient homogeneous concerning the distribution of the 10 metallic analytes investigated.

## Analytes B and Na

Both analytes could not be determined by ETV ICP OES precisely enough. Therefore other methods were used. The measurements were carried out by H.C. Starck GmbH, Goslar.

For the determination of B 0.5 g sub-samples were weighed into the PTFE-liner of the pressure digestion system DAB II (Berghof, Germany) and digested after adding of HF ( $73 \%$ ) and $\mathrm{HNO}_{3}$ ( $100 \%$, fuming) at $250{ }^{\circ} \mathrm{C}$ for 8 hours. The boron concentration in the digested and diluted sample was measured by ICP OES ("Ultrace", Jobin Yvon). The calibration solutions were matrix adapted for acids and or Si . The values used for the homogeneity investigation are the mean values of two measurements of the same digestion solution at different days
For the determination of Na 0.5 mg sub-samples were analysed directly by solid sampling AAS (SS ET AAS) using the spectrometer "AAS SEA solid" (Analytik Jena AG, Jena, Germany). The calibration was done using aliquots of calibration solutions.

It was not necessary to summarize measurements from different sub-samples, as done for other metallic elements. Apart from this, the structure for the documents containing the evaluation of the measurements is similar as for the metallic elements. The table of first page of the documents for an element ( B or Na ) contains the results for measurements of every $M=3$ sub-samples from $N=20$ bottles (= column "values"). The results of every 3 subsamples are summarized in the following columns as "mean of sub-samples $1-3$ ", the corresponding standard deviations within each bottle "SD" and the derived standard deviation "RSD ${ }_{w}$ ". The symbols below the table are analogous to those of the metallic elements, as well as the three tables on the next page, containing the measurement results for the homogeneous sample and the homogeneity tests between and within the bottles
which are totally analogous to those for the metallic elements (see above). For both analytes ( B and Na ) no significant inhomogeneities were found within the bottles. - The same holds true for the homogeneity of the distribution of Na between the bottles, whereas for B a significant inhomogeneity between the bottles was found.

## Non-metallic analytes

The measurements for the homogeneity investigations of these analytes were carried out by ESK, Kempten (now: Wacker Ceramics, Kempten). Different methods were applied for the determination of different analytes.
The content of $\mathrm{C}_{\text {total }}$ was determined by two different methods. One consisted in the combustion of sub-samples of $20-25 \mathrm{mg}$ in a high frequency furnace WC200 (LECO) in an oxygen stream. The generated $\mathrm{CO}_{2}$ gas was collected in a C-trap and was measured by an infrared measuring cell after release. The other method consisted in the coulometric determination of $\mathrm{CO}_{2}$ with the Coulomat 702 (Ströhlein) after combustion of the sub-samples of ca. 50 mg in an oxygen stream and using lead borate as aggregat.
$\mathrm{C}_{\text {free }}$ was determined by a procedure derived from DIN 51075 . About 0.5 g sub-sample was handled in an oxygen stream at $850^{\circ} \mathrm{C}$. The generated $\mathrm{CO}_{2}$ was coulometrically determined using the Coulomat 702 (Ströhlein). The sample boat was weighed before and after the chemical reaction and the partial amount of SiC which had also reacted ( $\mathrm{SiC} \rightarrow \mathrm{SiO}_{2}+$ $\mathrm{CO}_{2} \uparrow$ ) was taken into account (see "Method M 2 " of appendix of certificate).
Oxygen was determined using about 80 mg sub-samples in a resistance heated furnace TC436 (LECO) in a helium carrier gas stream. CO was catalytically oxidized to $\mathrm{CO}_{2}$. The total concentration of $\mathrm{CO}_{2}$ was measured by an infrared measuring cell.
Homogeneity investigations were also carried out for two of the three not certified, indicative values namely for N and $\mathrm{Si}_{\text {reee }}$.
N was determined by carrier gas hot extraction in a resistance heated furnace TC436 (LECO) using helium as carrier gas and a thermal conductivity measuring cell. Sub-samples of about 80 mg were used.
$\mathrm{SiO}_{2 \text { free }}$ was determined by distillation after chemical reaction. The sub-sample was treated with HF , distilled as $\mathrm{H}_{2} \mathrm{SiF}_{6}$ and determined as Si after absorption in water by using ICP OES. The structure of the tables containing the evaluation of the measurements is similar as for the analytes B and Na . The only difference is, that the homogenized sample was not analysed for the analytes $\mathrm{C}_{\text {free }}, \mathrm{O}, \mathrm{N}$ and $\mathrm{SiO}_{2 \text { rree }}$.Therefore no homogeneity test within the bottles could be carried out for these analytes. The reason for this is, that these analytes can be assumed to be distributed homogenously within bottles, because they are tightly fixed within the volume or at the surface of the powder grains.

The homogeneity tests between the bottles had the following results:

- For $\mathrm{C}_{\text {total, }} \mathrm{O}$ and N : no significant inhomogeneities,
- For $\mathrm{C}_{\text {free }}$ and $\mathrm{SiO}_{2 \text { 2fee: }}$ significant inhomogeneities


## Conclusion:

The homogeneity investigations showed satisfying results in most cases. Independent from the results of the statistical tests carried out, the contributions from the between bottle standard deviations and the within-bottle standard deviations were corrected by the standard deviation of the homogeneous samples (if determined) and both contributions were (together with the contribution from the round robin test for certification) included into the calculation of the final measurement uncertainties of the certified values.

ETV ICP OES-results (means of two spectral lines) measured on 4 different days.
Measurements, compilation of results: ESK, Ceramics GmbH \& Co.KG, Kempten; Germany
Final evaluation: BAM, Federal Institute for Materials and Testing (Division I.1)

## Analyt AI

mass fraction in $\mathrm{mg} / \mathrm{kg}$

| Line number | Sample number | mean calculated from 2 lines (02.06.01) | mean calculated from 2 lines (06.06.01) | mean calculated from 2 lines (12.06.01) | mean calculated from 2 lines $(30.05 .01)$ | mean | mean of sub-samples 1-4 | $\begin{gathered} \text { SD of } \\ \text { sub-samples } \\ 1-4 \\ \hline \hline \end{gathered}$ | $\begin{aligned} & \text { RSD }_{\mathrm{w}} \\ & \text { (rel. \%) } \\ & \hline \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2/1 | 352.949 | 370.906 | 310.255 | 350.430 | 346.1 | 352.4 | 5.4 | 1.5 |
|  | 2/2 | 386.167 | 345.198 | 334.743 | 352.567 | 354.7 |  |  |  |
|  | 2/3 | 348.476 | 362.365 | 371.428 | 351.978 | 358.6 |  |  |  |
|  | 2/4 | 362.095 | 345.555 | 363.859 | 329.665 | 350.3 |  |  |  |
| 2 | 29/1 | 368.412 | 348.855 | 383.181 | 350.308 | 362.7 | 354.4 | 9.6 | 2.7 |
|  | 29/2 | 383.851 | 332.294 | 383.602 | 345.507 | 361.3 |  |  |  |
|  | 29/3 | 334.527 | 375.793 | 323.465 | 334.352 | 342.0 |  |  |  |
|  | 29/4 | 356.967 | 364.864 | 336.941 | 346.885 | 351.4 |  |  |  |
| 3 | 35/1 | 360.794 | 381.766 | 358.433 | 354.476 | 363.9 | 353.6 | 8.6 | 2.4 |
|  | 35/2 | 336.621 | 369.617 | 372.442 | 341.566 | 355.1 |  |  |  |
|  | 35/3 | 357.734 | 329.001 | 348.870 | 335.877 | 342.9 |  |  |  |
|  | 35/4 | 341.074 | 363.423 | 355.014 | 351.312 | 352.7 |  |  |  |
| 4 | 56/1 | 374.227 | 371.689 | 347.917 | 347.102 | 360.2 | 361.5 | 7.9 | 2.2 |
|  | 56/2 | 403.727 | 383.608 | 368.926 | 335.932 | 373.0 |  |  |  |
|  | 56/3 | 348.249 | 384.623 | 346.319 | 348.852 | 357.0 |  |  |  |
|  | 56/4 | 354.690 | 353.934 | 372.514 | 341.859 | 355.7 |  |  |  |
| 5 | 76/1 | 354.875 | 393.698 | 373.662 | 356.530 | 369.7 | 368.5 | 16.1 | 4.4 |
|  | 76/2 | 324.747 | 393.077 | 362.946 | 357.796 | 359.6 |  |  |  |
|  | 76/3 | 370.918 | 350.797 | 331.896 | 363.086 | 354.2 |  |  |  |
|  | 76/4 | 405.483 | 388.658 | 372.031 | 396.584 | 390.7 |  |  |  |
| 6 | 90/1 | 373.099 | 360.547 | 398.238 | 355.588 | 371.9 | 360.9 | 10.7 | 3.0 |
|  | 90/2 | 349.312 | 319.690 | 396.646 | 391.045 | 364.2 |  |  |  |
|  | 90/3 | 372.309 | 363.696 | 365.001 | 343.718 | 361.2 |  |  |  |
|  | 90/4 | 332.988 | 357.085 | 338.249 | 357.226 | 346.4 |  |  |  |
| 7 | 108/1 | 371.413 | 369.700 | 358.373 | 357.501 | 364.2 | 361.5 | 9.7 | 2.7 |
|  | 108/2 | 311.525 | 333.057 | 366.515 | 385.891 | 349.2 |  |  |  |
|  | 108/3 | 350.061 | 392.183 | 348.916 | 349.667 | 360.2 |  |  |  |
|  | 108/4 | 367.528 | 378.171 | 397.480 | 346.735 | 372.5 |  |  |  |

Analyt AI

| Serial number | Sample number | mean calculated from 2 lines (02.06.01) | mean calculated from 2 lines (06.06.01) | mean calculated from 2 lines (12.06.01) | mean calculated from 2 lines (30.05.01) | mean | mean of sub-samples 1-4 | $\begin{gathered} \text { SD of } \\ \text { sub-samples } \\ 1-4 \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{RSD}_{\mathrm{w}} \\ \text { (rel. \%) } \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | 128/1 | 378667 | 442141 | 318504 | 361038 | 375.1 | 366.2 | 8.1 | 2.2 |
|  | 128/2 | 352.444 | 361.365 | 347.102 | 370.325 | 357.8 |  |  |  |
|  | 128/3 | 387.659 | 355.049 | 359.476 | 342.252 | 361.1 |  |  |  |
|  | 128/4 | 373.146 | 373.958 | 367.691 | 368.817 | 370.9 |  |  |  |
| 9 | 132/1 | 365.092 | 397.025 | 329.132 | 369.704 | 365.2 | 365.1 | 9.6 | 2.6 |
|  | 132/2 | 367.754 | 365.785 | 366.112 | 387.142 | 371.7 |  |  |  |
|  | 132/3 | 375.960 | 370.524 | 356.047 | 385.205 | 371.9 |  |  |  |
|  | 132/4 | 336.822 | 348.498 | 368.694 | 351.896 | 351.5 |  |  |  |
| 10 | 156/1 | 372.554 | 381.774 | 341.129 | 344.043 | 359.9 | 360.0 | 5.5 | 1.5 |
|  | 156/2 | 335.336 | 336.116 | 364.177 | 373.808 | 352.4 |  |  |  |
|  | 156/3 | 383.612 | 378.530 | 335.422 | 354.832 | 363.1 |  |  |  |
|  | 156/4 | 362.044 | 356.820 | 382.331 | 358.156 | 364.8 |  |  |  |
| 11 | 164/1 | 353689 | 432567 | 353705 | 351589 | 372.9 | 355.5 | 12.1 | 3.4 |
|  | 164/2 | 315.450 | 330.680 | 398.756 | 368.634 | 353.4 |  |  |  |
|  | 164/3 | 362.300 | 320.258 | 346.681 | 350.532 | 344.9 |  |  |  |
|  | 164/4 | 341.813 | 338.723 | 351.378 | 370.492 | 350.6 |  |  |  |
| 12 | 188/1 | 396.318 | 395.686 | 350.294 | 365.871 | 377.0 | 350.8 | 21.1 | 6.0 |
|  | 188/2 | 337.448 | 322.826 | 325.426 | 340.197 | 331.5 |  |  |  |
|  | 188/3 | 354.129 | 311.915 | 341.747 | 337.547 | 336.3 |  |  |  |
|  | 188/4 | 349.649 | 387.403 | 356.370 | 340.631 | 358.5 |  |  |  |
| 13 | 195/1 | 347.692 | 381.150 | 358.754 | 356.706 | 361.1 | 362.2 | 11.0 | 3.0 |
|  | 195/2 | 329.040 | 381.395 | 383.472 | 416.827 | 377.7 |  |  |  |
|  | 195/3 | 384.465 | 319.565 | 333.573 | 370.637 | 352.1 |  |  |  |
|  | 195/4 | 361.305 | 344.891 | 337.359 | 388.794 | 358.1 |  |  |  |
| 14 | 221/1 | 331108 | 372018 | 392735 | 330534 | 356.6 | 358.1 | 6.7 | 1.9 |
|  | 221/2 | 358.920 | 330.904 | 340.970 | 371.207 | 350.5 |  |  |  |
|  | 221/3 | 357.558 | 325.391 | 378.620 | 371.735 | 358.3 |  |  |  |
|  | 221/4 | 383.793 | 370.316 | 371.604 | 341.548 | 366.8 |  |  |  |
| 15 | 229/1 | 391272 | 403858 | 374673 | 350890 | 380.2 | 364.9 | 11.0 | 3.0 |
|  | 229/2 | 335.298 | 358.338 | 378.692 | 356.074 | 357.1 |  |  |  |
|  | 229/3 | 354.307 | 329.546 | 371.961 | 370.897 | 356.7 |  |  |  |
|  | 229/4 | 370.682 | 389.165 | 341.233 | 360.875 | 365.5 |  |  |  |
| 16 | 253/1 | 355072 | 414507 | 386593 | 350008 | 376.5 | 368.3 | 7.2 | 2.0 |
|  | 253/2 | 338.668 | 334.060 | 347.434 | 437.302 | 364.4 |  |  |  |
|  | 253/3 | 390.844 | 328.206 | 388.903 | 378.573 | 371.6 |  |  |  |
|  | 253/4 | 388.050 | 366.670 | 335.403 | 351.854 | 360.5 |  |  |  |
| 17 | 264/1 | 388714 | 360193 | 352119 | 332521 | 358.4 | 364.7 | 8.7 | 2.4 |
|  | 264/2 | 355.926 | 351.751 | 395.141 | 395.981 | 374.7 |  |  |  |
|  | 264/3 | 363.666 | 362.411 | 347.615 | 351.940 | 356.4 |  |  |  |
|  | 264/4 | 369.105 | 339.887 | 380.744 | 386.688 | 369.1 |  |  |  |

## Analyt AI

| Serial number | Sample number | mean calculated from 2 lines (02.06.01) | mean calculated from 2 lines (06.06.01) | mean calculated from 2 lines (12.06.01) | mean calculated from 2 lines $(30.05 .01)$ | mean | mean of sub-samples 1-4 | $\begin{gathered} \text { SD of } \\ \text { sub-samples } \\ 1-4 \\ \hline \hline \end{gathered}$ | $\begin{gathered} \mathrm{RSD}_{\mathrm{w}} \\ \text { (rel. } \% \text { ) } \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 18 | 279/1 | 347.631 | 331.048 | 326.909 | 337.908 | 335.9 | 354.7 | 17.4 | 4.9 |
|  | 279/2 | 408.868 | 339.928 | 345.085 | 362.016 | 364.0 |  |  |  |
|  | 279/3 | 358.154 | 350.606 | 329.329 | 342.395 | 345.1 |  |  |  |
|  | 279/4 | 397.063 | 355.738 | 382.294 | 360.788 | 374.0 |  |  |  |
| 19 | 294/1 | 326.367 | 352.446 | 400.796 | 350.479 | 357.5 | 360.5 | 3.7 | 1.0 |
|  | 294/2 | 335.120 | 371.518 | 327.441 | 399.449 | 358.4 |  |  |  |
|  | 294/3 | 335.719 | 430.366 | 364.327 | 332.682 | 365.8 |  |  |  |
|  | 294/4 | 381.380 | 361.626 | 342.350 | 355.848 | 360.3 |  |  |  |
| 20 | 307/1 | 350.658 | 345.316 | 341.580 | 361.467 | 349.8 | 365.4 | 11.8 | 3.2 |
|  | 307/2 | 324.633 | 399.603 | 367.926 | 361.412 | 363.4 |  |  |  |
|  | 307/3 | 347.050 | 349.617 | 396.709 | 413.994 | 376.8 |  |  |  |
|  | 307/4 | 418.370 | 396.261 | 327.634 | 344.491 | 371.7 |  |  |  |


| $\mathbf{M}_{\text {Ss }}-$ mean of <br> means of the <br> sub-samples 1-4 | 360.5 |
| :--- | :---: |
| SD of means of |  |
| the sub-samples |  |
| $1-4$ | 5.4 |
| RSD (\%) | 1.5 |

## Analyt AI

HS = Homogeneous sample

| Serial <br> number | Sample <br> number | mean <br> calculated <br> from 2 lines <br> $(02.06 .01)$ | mean <br> calculated <br> from 2 lines <br> $(06.06 .01)$ | mean <br> calculated <br> from 2 lines <br> $(12.06 .01)$ | mean <br> calculated <br> from 2 lines <br> $(30.05 .01)$ | mean |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
| 1 | HS 1 | 377.023 | 375.786 | 363.473 | 340.591 | $\mathbf{3 6 4 . 2}$ |
| 2 | HS 2 | 409.853 | 354.320 | 344.315 | 356.633 | $\mathbf{3 6 6 . 3}$ |
| 3 | HS 3 | 362.399 | 382.353 | 366.021 | 338.611 | $\mathbf{3 6 2 . 3}$ |
| 4 | HS 4 | 334.316 | 394.472 | 361.196 | 338.777 | $\mathbf{3 5 7 . 2}$ |
| 5 | HS 5 | 338.073 | 343.698 | 376.340 | 345.293 | $\mathbf{3 5 0 . 9}$ |
| 6 | HS 6 | 323.128 | 336.456 | 361.785 | 340.248 | $\mathbf{3 4 0 . 4}$ |
| 7 | HS 7 | 411.139 | 320.358 | 353.685 | 354.967 | $\mathbf{3 6 0 . 0}$ |
| 8 | HS 8 | 360.894 | 372.987 | 368.214 | 391.395 | $\mathbf{3 7 3 . 4}$ |
| 9 | HS 9 | 336.525 | 330.873 | 353.920 | 367.824 | $\mathbf{3 4 7 . 3}$ |
| 10 | HS 10 | 330.724 | 347.927 | 363.606 | 351.729 | $\mathbf{3 4 8 . 5}$ |
| 11 | HS 11 | 376.104 | 351.882 | 339.867 | 338.529 | $\mathbf{3 5 1 . 6}$ |
| 12 | HS 12 | 348.222 | 375.456 | 368.362 | 411.696 | $\mathbf{3 7 5 . 9}$ |

HS = Homogeneous sample

| 13 | HS 13 | 320.144 | 352.718 | 361.000 | 384.325 | $\mathbf{3 5 4 . 5}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 14 | HS 14 | 377.707 | 357.339 | 364.779 | 350.302 | $\mathbf{3 6 2 . 5}$ |
| 15 | HS 15 | 348.801 | 350.975 | 369.362 | 374.608 | $\mathbf{3 6 0 . 9}$ |
| 16 | HS 16 | 386.217 | 361.164 | 355.696 | 347.531 | $\mathbf{3 6 2 . 7}$ |
| 17 | HS 17 | 380.080 | 377.472 | 351.170 | 344.959 | $\mathbf{3 6 3 . 4}$ |
| 18 | HS 18 | 337.797 | 342.003 | 373.163 | 374.335 | $\mathbf{3 5 6 . 8}$ |
| 19 | HS 19 | 351.576 | 413.773 | 361.933 | 368.522 | $\mathbf{3 7 4 . 0}$ |
| 20 | HS 20 | 380.270 | 377.127 | 351.869 | 377.326 | $\mathbf{3 7 1 . 6}$ |


| Homogeneity between the samples |  |  |  |
| :---: | :---: | :---: | :---: |
| Analysis of variance: $\alpha=0.05$ |  |  |  |
| standard deviation within the samples $\mathrm{S}_{\mathrm{w}}$ | 10.9 | $\begin{gathered} \mathrm{M}_{\mathrm{Ss}} \\ 360.5 \end{gathered}$ | RSD \% $1.5$ |
| standard deviation between the samples $S_{b}$ | 10.8 | $F_{\text {value }}$ | 1.768 |
| test value $\mathrm{s}_{\mathrm{b}}^{2} / \mathrm{s}_{\mathrm{w}}^{2}$ | 0.98 | Characteristic no. for homogeneity between the samples | 0.56 |
| Homogeneity between the samples: No significant inhomogeneity |  |  |  |


| Homogeneity within the samples |  |  |  |
| :---: | :---: | :---: | :---: |
| Analysis of variance: $\alpha=0.05$ |  |  |  |
| standard deviation of homogeneous sample $\mathrm{S}_{\mathrm{HS}}$ | 9.5 | $\begin{gathered} M_{\text {HS }} \\ 360.2 \end{gathered}$ | $\begin{gathered} \text { RSD }_{\text {HS }} \% \\ 2.6 \end{gathered}$ |
|  |  | $\mathrm{F}_{\text {value }}$ | 1.98 |
| test value $\mathrm{s}_{\mathrm{w}}^{2} / \mathrm{s}_{\mathrm{HS}}{ }^{2}$ | 1.30 | Characteristic no. for homogeneity within the samples | 0.66 |
| Homogeneity within the samples: No significant inhomogeneity |  |  |  |

ETV ICP OES-results (means of two spectral lines) measured on 4 different days.
Measurements, compilation of results: ESK, Ceramics GmbH \& Co.KG, Kempten; Germany
Final evaluation: BAM, Federal Institute for Materials and Testing (Division I.1)

## Analyt Ca

mass fraction in mg/kg

| Serial number | Sample number | mean calculated from 2 lines (02.06.01) | mean calculated from 2 lines (06.06.01) | mean calculated from 2 lines (12.06.01) | mean calculated from 2 lines (30.05.01) | mean | mean of sub-samples 1-4 | $\begin{gathered} \text { SD of } \\ \text { sub-samples } \\ 1-4 \\ \hline \end{gathered}$ | $\begin{aligned} & \text { RSD }_{w} \\ & \text { (rel. \%) } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2/1 | 25.710 | 25.570 | 24.275 | 26.795 | 25.59 | 25.64 | 0.3 | 1.3 |
|  | 2/2 | 26.693 | 26.075 | 25.584 | 25.653 | 26.00 |  |  |  |
|  | 2/3 | 25.148 | 25.712 | 25.886 | 26.318 | 25.77 |  |  |  |
|  | 2/4 | 26.842 | 25.212 | 25.546 | 23.216 | 25.20 |  |  |  |
| 2 | 29/1 | 26.821 | 25.971 | 26.891 | 25.410 | 26.27 | 26.01 | 0.3 | 1.2 |
|  | 29/2 | 24.711 | 26.139 | 25.951 | 26.531 | 25.83 |  |  |  |
|  | 29/3 | 25.950 | 25.354 | 25.308 | 28.416 | 26.26 |  |  |  |
|  | 29/4 | 26.719 | 26.415 | 24.948 | 24.645 | 25.68 |  |  |  |
| 3 | 35/1 | 26.159 | 25.712 | 26.692 | 27.951 | 26.63 | 26.33 | 0.5 | 2.0 |
|  | 35/2 | 25.224 | 26.264 | 25.762 | 30.278 | 26.88 |  |  |  |
|  | 35/3 | 26.553 | 26.115 | 25.767 | 25.935 | 26.09 |  |  |  |
|  | 35/4 | 25.227 | 24.897 | 27.152 | 25.550 | 25.71 |  |  |  |
| 4 | 56/1 | 26.592 | 25.992 | 26.214 | 25.887 | 26.17 | 26.19 | 0.4 | 1.5 |
|  | 56/2 | 25.618 | 26.929 | 26.080 | 25.621 | 26.06 |  |  |  |
|  | 56/3 | 25.786 | 27.641 | 26.702 | 26.795 | 26.73 |  |  |  |
|  | 56/4 | 25.834 | 26.209 | 26.187 | 24.923 | 25.79 |  |  |  |
| 5 | 76/1 | 26.731 | 25.655 | 26.531 | 26.132 | 26.26 | 26.26 | 0.2 | 1.0 |
|  | 76/2 | 25.396 | 26.555 | 26.591 | 26.442 | 26.25 |  |  |  |
|  | 76/3 | 25.320 | 28.865 | 26.190 | 25.945 | 26.58 |  |  |  |
|  | 76/4 | 25.456 | 25.942 | 26.523 | 25.953 | 25.97 |  |  |  |
| 6 | 90/1 | 27.343 | 26.745 | 25.745 | 26.236 | 26.52 | 26.27 | 0.6 | 2.4 |
|  | 90/2 | 26.089 | 25.757 | 23.750 | 26.197 | 25.45 |  |  |  |
|  | 90/3 | 27.369 | 25.854 | 28.612 | 25.808 | 26.91 |  |  |  |
|  | 90/4 | 26.028 | 27.103 | 26.642 | 25.034 | 26.20 |  |  |  |
| 7 | 108/1 | 26.266 | 26.399 | 26.121 | 26.324 | 26.28 | 26.31 | 0.2 | 0.7 |
|  | 108/2 | 28.111 | 26.177 | 25.752 | 26.292 | 26.58 |  |  |  |
|  | 108/3 | 26.008 | 26.666 | 25.461 | 26.955 | 26.27 |  |  |  |
|  | 108/4 | 26.183 | 25.386 | 27.188 | 25.697 | 26.11 |  |  |  |
| 8 | 128/1 | 26.549 | 26.102 | 24.174 | 26.103 | 25.73 | 25.76 | 0.4 | 1.6 |
|  | 128/2 | 25.366 | 26.607 | 25.826 | 27.325 | 26.28 |  |  |  |
|  | 128/3 | 25.580 | 25.399 | 24.405 | 25.644 | 25.26 |  |  |  |
|  | 128/4 | 25.345 | 25.570 | 27.382 | 24.707 | 25.75 |  |  |  |

Analyt Ca

| Serial number | Sample number | mean calculated from 2 lines (02.06.01) | mean calculated from 2 lines (06.06.01) | mean calculated from 2 lines (12.06.01) | mean calculated from 2 lines $(30.05 .01)$ | mean | $\begin{gathered} \text { mean of } \\ \text { sub-samples } \\ 1-4 \\ \hline \hline \end{gathered}$ | $\qquad$ | $\begin{gathered} \mathrm{RSD}_{\mathrm{w}} \\ \text { (rel.\%) } \\ \hline \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | 132/1 | 26.486 | 25.820 | 25.406 | 26.161 | 25.97 | 25.60 | 0.4 | 1.5 |
|  | 132/2 | 24.995 | 25.574 | 25.352 | 27.666 | 25.90 |  |  |  |
|  | 132/3 | 26.324 | 26.467 | 25.681 | 22.403 | 25.22 |  |  |  |
|  | 132/4 | 24.763 | 24.992 | 26.044 | 25.428 | 25.31 |  |  |  |
| 10 | 156/1 | 25.894 | 26.917 | 26.483 | 26.352 | 26.41 | 26.15 | 0.2 | 0.7 |
|  | 156/2 | 25.286 | 26.215 | 25.045 | 28.079 | 26.16 |  |  |  |
|  | 156/3 | 26.020 | 25.520 | 26.778 | 25.647 | 25.99 |  |  |  |
|  | 156/4 | 26.939 | 26.008 | 25.080 | 26.192 | 26.05 |  |  |  |
| 11 | 164/1 | 25.829 | 25.906 | 25.448 | 26.186 | 25.84 | 26.11 | 0.2 | 0.7 |
|  | 164/2 | 26.379 | 25.642 | 26.283 | 26.706 | 26.25 |  |  |  |
|  | 164/3 | 25.862 | 26.347 | 26.113 | 26.552 | 26.22 |  |  |  |
|  | 164/4 | 25.572 | 25.004 | 26.169 | 27.829 | 26.14 |  |  |  |
| 12 | 188/1 | 26.183 | 26.298 | 24.574 | 26.493 | 25.89 | 25.82 | 0.3 | 1.3 |
|  | 188/2 | 26.279 | 25.749 | 24.433 | 26.428 | 25.72 |  |  |  |
|  | 188/3 | 24.698 | 25.530 | 26.275 | 25.189 | 25.42 |  |  |  |
|  | 188/4 | 26.981 | 26.094 | 26.505 | 25.367 | 26.24 |  |  |  |
| 13 | 195/1 | 25.583 | 25.992 | 27.367 | 26.216 | 26.29 | 25.86 | 0.5 | 1.8 |
|  | 195/2 | 24.794 | 25.710 | 26.075 | 24.923 | 25.38 |  |  |  |
|  | 195/3 | 26.698 | 25.791 | 25.971 | 26.490 | 26.24 |  |  |  |
|  | 195/4 | 26.121 | 25.683 | 24.304 | 26.034 | 25.54 |  |  |  |
| 14 | 221/1 | 26.267 | 26.077 | 25.862 | 24.652 | 25.71 | 26.09 | 0.3 | 1.3 |
|  | 221/2 | 25.008 | 25.863 | 26.199 | 28.478 | 26.39 |  |  |  |
|  | 221/3 | 25.240 | 25.652 | 26.197 | 26.487 | 25.89 |  |  |  |
|  | 221/4 | 27.307 | 25.789 | 26.479 | 25.861 | 26.36 |  |  |  |
| 15 | 229/1 | 25.657 | 25.965 | 25.458 | 25.133 | 25.55 | 25.93 | 0.3 | 1.1 |
|  | 229/2 | 25.511 | 24.829 | 26.751 | 26.444 | 25.88 |  |  |  |
|  | 229/3 | 25.761 | 26.493 | 26.030 | 25.975 | 26.06 |  |  |  |
|  | 229/4 | 26.406 | 26.388 | 26.083 | 25.951 | 26.21 |  |  |  |
| 16 | 253/1 | 25.384 | 25.681 | 26.310 | 25.162 | 25.63 | 25.91 | 0.5 | 1.8 |
|  | 253/2 | 26.267 | 26.167 | 25.084 | 24.296 | 25.45 |  |  |  |
|  | 253/3 | 26.364 | 26.371 | 26.878 | 26.268 | 26.47 |  |  |  |
|  | 253/4 | 26.504 | 26.258 | 25.939 | 25.589 | 26.07 |  |  |  |
| 17 | 264/1 | 25.848 | 28.515 | 25.385 | 26.372 | 26.53 | 26.10 | 0.6 | 2.2 |
|  | 264/2 | 25.168 | 25.863 | 25.764 | 24.453 | 25.31 |  |  |  |
|  | 264/3 | 25.820 | 25.452 | 26.868 | 25.946 | 26.02 |  |  |  |
|  | 264/4 | 28.347 | 25.920 | 26.616 | 25.286 | 26.54 |  |  |  |

Analyt Ca

| Serial number | Sample number | mean calculated from 2 lines (02.06.01) | mean calculated from 2 lines (06.06.01) | mean calculated from 2 lines (12.06.01) | mean calculated from 2 lines (30.05.01) | mean | mean of sub-samples 1-4 | $\begin{gathered} \text { SD of } \\ \text { sub-samples } \\ 1-4 \\ \hline \end{gathered}$ | $\begin{aligned} & \mathrm{RSD}_{\mathrm{w}} \\ & \text { (rel. \%) } \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 18 | 279/1 | 26.138 | 26.101 | 25.583 | 25.990 | 25.95 | 25.85 | 0.3 | 1.3 |
|  | 279/2 | 25.064 | 26.795 | 26.279 | 26.865 | 26.25 |  |  |  |
|  | 279/3 | 24.586 | 26.714 | 26.347 | 25.382 | 25.76 |  |  |  |
|  | 279/4 | 27.162 | 26.488 | 22.809 | 25.348 | 25.45 |  |  |  |
| 19 | 294/1 | 26.101 | 25.985 | 25.068 | 24.884 | 25.51 | 25.78 | 0.3 | 1.2 |
|  | 294/2 | 25.344 | 26.111 | 26.360 | 26.452 | 26.07 |  |  |  |
|  | 294/3 | 25.605 | 26.956 | 26.326 | 25.117 | 26.00 |  |  |  |
|  | 294/4 | 26.285 | 25.055 | 25.929 | 24.852 | 25.53 |  |  |  |
| 20 | 307/1 | 25.777 | 26.066 | 26.670 | 25.603 | 26.03 | 26.09 | 0.6 | 2.1 |
|  | 307/2 | 25.955 | 23.936 | 25.585 | 25.935 | 25.35 |  |  |  |
|  | 307/3 | 26.799 | 26.034 | 25.772 | 28.105 | 26.68 |  |  |  |
|  | 307/4 | 26.646 | 26.543 | 26.088 | 25.903 | 26.29 |  |  |  |

$\mathrm{M}_{\mathrm{ss}}$ - mean o
$\begin{array}{ll}\text { means of the } \\ \text { sub-samples 1-4 } & 26.00\end{array}$
SD of means of
SD of means of
0.2

RSD (rel.\%)
0.9

## Analyt Ca

HS = Homogeneous sample

| Serial number | Sample number | mean calculated from 2 lines (02.06.01) | mean calculated from 2 lines (06.06.01) | mean calculated from 2 lines (12.06.01) | mean calculated from 2 lines $(30.05 .01)$ | mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | HS 1 | 25.825 | 27.681 | 24.126 | 24.593 | 25.56 |
| 2 | HS 2 | 25.606 | 25.293 | 26.857 | 26.795 | 26.14 |
| 3 | HS 3 | 25.127 | 24.298 | 26.146 | 25.821 | 25.35 |
| 4 | HS 4 | 25.535 | 25.924 | 29.671 | 26.033 | 26.79 |
| 5 | HS 5 | 25.556 | 25.761 | 24.845 | 26.744 | 25.73 |
| 6 | HS 6 | 25.333 | 26.540 | 26.902 | 25.693 | 26.12 |
| 7 | HS 7 | 26.267 | 24.476 | 26.066 | 27.099 | 25.98 |
| 8 | HS 8 | 24.657 | 26.688 | 25.349 | 23.445 | 25.03 |
| 9 | HS 9 | 28.932 | 27.622 | 25.456 | 26.220 | 27.06 |
| 10 | HS 10 | 25.224 | 25.187 | 25.561 | 29.596 | 26.39 |
| 11 | HS 11 | 25.965 | 25.469 | 25.871 | 27.475 | 26.20 |
| 12 | HS 12 | 25.838 | 26.515 | 24.708 | 23.883 | 25.24 |
| 13 | HS 13 | 27.275 | 25.024 | 26.876 | 24.242 | 25.85 |


$M_{\text {HS }}$ - mean of homogeneous

| sample | 25.93 |
| :--- | :---: |
| SD $_{\text {HS }}$ | 0.5 |
| RSD $_{H S}(\%)$ | 2.0 |


| Homogeneity between the samples |  |  |  |
| :--- | :---: | :---: | :---: |
| Analysis of variance: $\alpha=0.05$ | $\mathrm{M}_{\mathrm{Ss}}$ |  |  |
| standard deviation <br> within the samples $\mathrm{s}_{\mathrm{w}}$ | 0.4 | 26.00 | RSD \% |
| standard deviation <br> between the samples <br> $\mathrm{s}_{\mathrm{b}}$ | 0.4 | $\mathrm{~F}_{\text {value }}$ | 0.9 |


| Homogeneity within the samples |  |  |  |
| :---: | :---: | :---: | :---: |
| Analysis of variance: $\mathrm{a}=0.05$ |  |  |  |
| standard deviation of homogeneous sample SHS | 0.5 | $\begin{gathered} \mathrm{M}_{\mathrm{HS}} \\ 25.93 \end{gathered}$ | $\begin{gathered} \mathrm{RSD}_{\text {HS }} \% \\ 2.0 \end{gathered}$ |
|  |  | $\mathrm{F}_{\text {value }}$ | 1.98 |
| test value $\mathrm{s}_{\mathrm{w}}{ }^{2} / \mathrm{s}_{\mathrm{HS}}{ }^{2}$ | 0.60 | Characteristic no. for homogeneity within the samples | 0.30 |
| Homogeneity within the samples: No significant inhomogeneity |  |  |  |

ETV ICP OES-results (means of 3 spectral lines) measured on 7 different days.
Measurements, compilation of results: ESK, Ceramics GmbH \& Co.KG, Kempten; Germany
Final evaluation: BAM, Federal Institute for Materials and Testing (Division I.1)
Analyt Cr
mass fraction in $\mathrm{mg} / \mathrm{kg}$

| Serial number | Sample number | mean calculated from 3 lines (16.02.00) | mean calculated from 3 lines (21.02.00) | mean calculated from 3 lines (23.02.00) | mean calculated from 3 lines (02.06.01) | mean calculated from 3 lines (06.06.01) | mean calculated from 3 lines (12.06.01) | mean calculated from 3 lines $(30.05 .01)$ | mean | $\begin{gathered} \text { mean of } \\ \text { sub-samples } \\ 1-4 \\ \hline \hline \end{gathered}$ | $\begin{gathered} \text { SD of } \\ \text { sub-samples } \\ 1-4 \\ \hline \hline \end{gathered}$ | $\begin{gathered} \mathrm{RSD}_{\mathrm{w}} \\ \text { (rel. } \% \text { ) } \\ \hline \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2/1 | 2.952 | 3.068 | 3.110 | 3.376 | 4.094 | 3.162 | 3.478 | 3.320 | 3.198 | 0.15 | 4.7 |
|  | 2/2 | 3.099 | 2.783 | 2.754 | 3.340 | 3.275 | 3.034 | 3.583 | 3.124 |  |  |  |
|  | 2/3 | 4.335 | 3.374 | 2.901 | 3.168 | 3.533 | 2.901 | 3.076 | 3.327 |  |  |  |
|  | 2/4 | 2.697 | 2.560 | 2.874 | 2.825 | 3.102 | 2.803 | 4.297 | 3.023 |  |  |  |
| 2 | 29/1 | 2.958 | 2.729 | 3.071 | 3.085 | 3.411 | 2.852 | 3.439 | 3.078 | 2.994 | 0.10 | 3.3 |
|  | 29/2 | 3.114 | 2.637 | 2.912 | 3.449 | 3.090 | 3.035 | 3.313 | 3.079 |  |  |  |
|  | 29/3 | 2.925 | 2.917 | 2.892 | 2.922 | 3.011 | 2.959 | 2.908 | 2.933 |  |  |  |
|  | 29/4 | 2.913 | 2.663 | 2.660 | 2.898 | 3.078 | 3.016 | 2.987 | 2.888 |  |  |  |
| 3 | 35/1 | 2.858 | 2.569 | 2.980 | 2.974 | 3.132 | 3.162 | 3.376 | 3.007 | 2.956 | 0.09 | 3.0 |
|  | 35/2 | 2.751 | 2.662 | 2.910 | 3.612 | 3.036 | 3.052 | 3.258 | 3.040 |  |  |  |
|  | 35/3 | 2.832 | 2.780 | 2.748 | 3.252 | 3.242 | 2.837 | 2.853 | 2.935 |  |  |  |
|  | 35/4 | 2.864 | 2.767 | 2.665 | 2.895 | 3.024 | 2.957 | 2.730 | 2.843 |  |  |  |
| 4 | 56/1 | 2.816 | 2.863 | 2.871 | 3.359 | 3.034 | 3.666 | 3.109 | 3.103 | 2.991 | 0.08 | 2.6 |
|  | 56/2 | 3.033 | 2.629 | 2.751 | 3.039 | 3.260 | 2.847 | 3.122 | 2.954 |  |  |  |
|  | 56/3 | 2.990 | 2.951 | 2.542 | 2.883 | 3.332 | 3.457 | 2.720 | 2.982 |  |  |  |
|  | 56/4 | 3.263 | 2.578 | 2.828 | 2.927 | 2.870 | 3.230 | 2.775 | 2.925 |  |  |  |
| 5 | 76/1 | 3.117 | 2.715 | 2.752 | 3.292 | 2.832 | 3.349 | 3.386 | 3.063 | 2.948 | 0.10 | 3.4 |
|  | 76/2 | 3.213 | 2.799 | 3.537 | 2.763 | 2.594 | 2.725 | 3.233 | 2.980 |  |  |  |
|  | 76/3 | 2.732 | 2.753 | 2.661 | 2.994 | 3.655 | 2.865 | 2.783 | 2.920 |  |  |  |
|  | 76/4 | 2.989 | 2.594 | 2.820 | 2.873 | 2.581 | 2.731 | 3.213 | 2.829 |  |  |  |
| 6 | 90/1 | 2.909 | 2.513 | 2.942 | 3.205 | 3.127 | 2.906 | 3.191 | 2.971 | 2.950 | 0.05 | 1.6 |
|  | 90/2 | 2.964 | 2.681 | 3.056 | 2.752 | 2.861 | 3.359 | 3.377 | 3.007 |  |  |  |
|  | 90/3 | 2.838 | 2.840 | 2.731 | 2.834 | 2.872 | 3.376 | 2.852 | 2.906 |  |  |  |
|  | 90/4 | 3.005 | 2.573 | 2.984 | 2.977 | 2.933 | 3.016 | 2.920 | 2.915 |  |  |  |
| 7 | 108/1 | 2.726 | 2.768 | 2.681 | 3.246 | 3.091 | 2.980 | 3.215 | 2.958 | 2.979 | 0.06 | 2.2 |
|  | 108/2 | 2.928 | 2.889 | 3.159 | 3.407 | 2.922 | 3.038 | 3.066 | 3.059 |  |  |  |
|  | 108/3 | 2.974 | 2.715 | 2.839 | 2.923 | 2.780 | 3.210 | 2.888 | 2.904 |  |  |  |
|  | 108/4 | 3.537 | 2.589 | 2.765 | 2.810 | 2.771 | 2.760 | 3.733 | 2.995 |  |  |  |
| 8 | 128/1 | 2.853 | 2.556 | 2.916 | 3.692 | 3.303 | 3.191 | 3.269 | 3.111 | 2.970 | 0.15 | 4.9 |
|  | 128/2 | 2.958 | 2.579 | 4.129 | 2.995 | 3.047 | 2.961 | 2.895 | 3.081 |  |  |  |
|  | 128/3 | 2.723 | 2.728 | 2.851 | 2.790 | 3.087 | 2.872 | 2.844 | 2.842 |  |  |  |
|  | 128/4 | 3.373 | 2.614 | 2.602 | 3.171 | 2.631 | 2.774 | 2.763 | 2.847 |  |  |  |

Analyt Cr

| Serial number | Sample number | mean calculated from 3 lines (16.02.00) | mean calculated from 3 lines (21.02.00) | mean calculated from 3 lines (23.02.00) | mean calculated from 3 lines (02.06.01) | mean calculated from 3 lines (06.06.01) | mean calculated from 3 lines (12.06.01) | mean calculated from 3 lines (30.05.01) | mean | mean of sub-samples 1-4 | $\begin{gathered} \text { SD of } \\ \text { sub-samples } \\ 1-4 \\ \hline \hline \end{gathered}$ | $\begin{gathered} \mathrm{RSD}_{\mathrm{w}} \\ \text { (rel. \%) } \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | 132/1 | 3.039 | 2.679 | 2.675 | 3.737 | 3.367 | 2.685 | 3.327 | 3.073 | 3.002 | 0.18 | 6.0 |
|  | 132/2 | 2.861 | 3.210 | 2.975 | 3.104 | 3.705 | 2.951 | 2.966 | 3.110 |  |  |  |
|  | 132/3 | 3.041 | 2.874 | 3.052 | 2.948 | 2.764 | 3.035 | 3.922 | 3.091 |  |  |  |
|  | 132/4 | 3.245 | 2.585 | 2.567 | 2.824 | 2.615 | 2.795 | 2.494 | 2.732 |  |  |  |
| 10 | 156/1 | 2.803 | 2.568 | 2.406 | 3.511 | 3.097 | 3.186 | 3.156 | 2.961 | 2.924 | 0.11 | 3.9 |
|  | 156/2 | 3.048 | 3.468 | 2.799 | 2.894 | 3.260 | 2.939 | 3.014 | 3.060 |  |  |  |
|  | 156/3 | 2.874 | 3.190 | 2.693 | 2.800 | 2.815 | 3.235 | 2.602 | 2.887 |  |  |  |
|  | 156/4 | 3.211 | 2.423 | 2.831 | 2.864 | 2.940 | 2.696 | 2.561 | 2.789 |  |  |  |
| 11 | 164/1 | 2.867 | 2.703 | 2.369 | 3.230 | 3.269 | 4.225 | 3.522 | 3.169 | 2.962 | 0.15 | 5.2 |
|  | 164/2 | 2.883 | 2.762 | 2.908 | 2.874 | 3.418 | 2.797 | 3.200 | 2.977 |  |  |  |
|  | 164/3 | 2.971 | 2.922 | 2.447 | 2.692 | 3.159 | 2.921 | 2.565 | 2.811 |  |  |  |
|  | 164/4 | 3.476 | 2.381 | 2.664 | 2.776 | 3.292 | 2.824 | 2.816 | 2.890 |  |  |  |
| 12 | 188/1 | 2.749 | 2.833 | 2.538 | 3.465 | 3.028 | 3.356 | 3.201 | 3.024 | 2.950 | 0.06 | 2.0 |
|  | 188/2 | 2.678 | 2.760 | 2.966 | 2.996 | 2.723 | 3.395 | 3.272 | 2.970 |  |  |  |
|  | 188/3 | 2.617 | 2.895 | 2.434 | 3.018 | 2.929 | 3.406 | 2.903 | 2.886 |  |  |  |
|  | 188/4 | 2.937 | 2.657 | 2.744 | 3.196 | 2.871 | 3.134 | 2.898 | 2.920 |  |  |  |
| 13 | 195/1 | 2.752 | 2.693 | 2.306 | 3.308 | 3.045 | 3.264 | 3.221 | 2.941 | 2.971 | 0.16 | 5.3 |
|  | 195/2 | 2.874 | 4.604 | 2.814 | 3.288 | 2.865 | 2.943 | 2.991 | 3.197 |  |  |  |
|  | 195/3 | 2.852 | 2.847 | 2.587 | 2.891 | 3.029 | 2.864 | 2.755 | 2.832 |  |  |  |
|  | 195/4 | 3.209 | 2.791 | 3.294 | 2.710 | 2.737 | 2.827 | 2.828 | 2.914 |  |  |  |
| 14 | 221/1 | 2.679 | 3.112 | 2.178 | 3.348 | 3.093 | 3.064 | 3.274 | 2.964 | 2.919 | 0.05 | 1.9 |
|  | 221/2 | 2.874 | 2.955 | 2.660 | 2.925 | 3.510 | 2.888 | 2.915 | 2.961 |  |  |  |
|  | 221/3 | 2.762 | 3.182 | 2.625 | 2.763 | 3.198 | 3.121 | 2.646 | 2.899 |  |  |  |
|  | 221/4 | 2.801 | 2.494 | 2.905 | 3.190 | 2.705 | 2.790 | 3.072 | 2.851 |  |  |  |
| 15 | 229/1 | 2.735 | 2.886 | 2.582 | 3.500 | 2.892 | 3.366 | 3.097 | 3.008 | 2.928 | 0.11 | 3.7 |
|  | 229/2 | 2.941 | 3.208 | 2.843 | 3.033 | 2.907 | 3.044 | 3.280 | 3.037 |  |  |  |
|  | 229/3 | 2.837 | 2.899 | 2.560 | 2.813 | 2.908 | 3.001 | 2.845 | 2.838 |  |  |  |
|  | 229/4 | 2.964 | 2.703 | 2.919 | 2.824 | 3.026 | 2.668 | 2.703 | 2.830 |  |  |  |
| 16 | 253/1 | 2.813 | 2.648 | 2.304 | 3.566 | 2.989 | 3.063 | 3.267 | 2.950 | 2.928 | 0.11 | 3.7 |
|  | 253/2 | 2.961 | 3.101 | 2.788 | 3.010 | 2.982 | 2.985 | 3.522 | 3.050 |  |  |  |
|  | 253/3 | 2.937 | 3.096 | 2.538 | 3.155 | 2.987 | 2.914 | 2.857 | 2.926 |  |  |  |
|  | 253/4 | 3.070 | 2.608 | 2.765 | 2.709 | 2.543 | 2.979 | 2.831 | 2.786 |  |  |  |
| 17 | 264/1 | 2.763 | 2.801 | 2.895 | 3.109 | 2.986 | 3.132 | 3.395 | 3.011 | 2.932 | 0.11 | 3.6 |
|  | 264/2 | 2.891 | 3.125 | 2.830 | 2.852 | 2.972 | 2.744 | 2.868 | 2.897 |  |  |  |
|  | 264/3 | 3.289 | 2.700 | 3.051 | 3.216 | 2.806 | 2.848 | 3.249 | 3.023 |  |  |  |
|  | 264/4 | 3.165 | 2.793 | 2.783 | 2.738 | 2.483 | 2.882 | 2.740 | 2.798 |  |  |  |

Analyt Cr

| Serial number | Sample number | mean calculated from 3 lines (16.02.00) | mean calculated from 3 lines (21.02.00) | mean calculated from 3 lines (23.02.00) | mean calculated from 3 lines (02.06.01) | mean calculated from 3 lines (06.06.01) | mean calculated from 3 lines (12.06.01) | mean calculated from 3 lines (30.05.01) | mean | $\begin{gathered} \text { mean of } \\ \text { sub-samples } \\ 1-4 \\ \hline \hline \end{gathered}$ | $\begin{gathered} \text { SD of } \\ \text { sub-samples } \\ 1-4 \\ \hline \hline \end{gathered}$ | $\begin{gathered} \mathrm{RSD}_{\mathrm{w}} \\ \text { (rel.\%) } \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 18 | 279/1 | 2.818 | 2.717 | 2.933 | 3.226 | 3.623 | 3.174 | 3.485 | 3.139 | 3.055 | 0.07 | 2.2 |
|  | 279/2 | 2.628 | 3.530 | 2.698 | 2.974 | 2.993 | 3.497 | 2.748 | 3.010 |  |  |  |
|  | 279/3 | 3.405 | 2.647 | 3.066 | 3.492 | 2.892 | 3.156 | 2.885 | 3.078 |  |  |  |
|  | 279/4 | 3.632 | 2.951 | 2.783 | 2.602 | 2.696 | 3.414 | 2.880 | 2.994 |  |  |  |
| 19.000 | 294/1 | 2.738 | 2.523 | 2.845 | 3.537 | 3.255 | 2.860 | 3.841 | 3.086 | 2.944 | 0.14 | 4.9 |
|  | 294/2 | 3.013 | 3.161 | 2.683 | 3.029 | 3.089 | 2.950 | 2.747 | 2.953 |  |  |  |
|  | 294/3 | 2.868 | 2.686 | 2.724 | 3.125 | 3.340 | 3.013 | 3.180 | 2.991 |  |  |  |
|  | 294/4 | 2.837 | 2.618 | 2.724 | 2.683 | 2.782 | 2.901 | 2.665 | 2.744 |  |  |  |
| 20.000 | 307/1 | 2.701 | 2.812 | 3.078 | 3.634 | 3.260 | 2.990 | 3.082 | 3.079 | 2.910 | 0.15 | 5.3 |
|  | 307/2 | 3.050 | 3.268 | 2.720 | 2.791 | 3.107 | 2.986 | 2.658 | 2.940 |  |  |  |
|  | 307/3 | 2.735 | 2.947 | 2.808 | 2.910 | 2.932 | 2.927 | 3.138 | 2.914 |  |  |  |
|  | 307/4 | 2.771 | 2.653 | 2.475 | 2.791 | 2.734 | 2.743 | 2.771 | 2.705 |  |  |  |


| $\mathrm{M}_{\mathrm{ss}}-$ mean of <br> means of the <br> sub-samples <br> $1-4$ | 2.971 |
| :---: | :---: |
| SD of means <br> of the sub- <br> samples 1-4 | 0.064 |
| RSD (rel.\%) | 2.143 |

## Analyt Cr

HS = Homogeneous sample

| Serial number | Sample number | mean calculated from 3 lines (16.02.00) | mean calculated from 3 lines (21.02.00) | mean calculated from 3 lines $(23.02 .00)$ | mean calculated from 3 lines (02.06.01) | mean calculated from 3 lines (06.06.01) | mean calculated from 3 lines (12.06.01) | mean calculated from 3 lines (30.05.01) | mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | HS 1 | 3.090 | 2.635 | 3.016 | 3.045 | 2.904 | 3.374 | 3.274 | 3.048 |
| 2 | HS 2 | 2.761 | 2.651 | 3.691 | 3.339 | 3.865 | 2.992 | 3.121 | 3.203 |
| 3 | HS 3 | 3.191 | 2.623 | 2.579 | 3.315 | 3.263 | 2.976 | 3.331 | 3.040 |
| 4 | HS 4 | 2.703 | 2.638 | 2.772 | 3.218 | 3.058 | 3.964 | 3.276 | 3.090 |
| 5 | HS 5 | 2.797 | 3.871 | 2.776 | 3.196 | 3.369 | 3.004 | 3.177 | 3.170 |
| 6 | HS 6 | 2.898 | 2.635 | 3.027 | 2.957 | 3.186 | 3.116 | 3.208 | 3.004 |
| 7 | HS 7 | 3.074 | 2.694 | 3.222 | 2.780 | 2.758 | 2.979 | 3.085 | 2.942 |
| 8 | HS 8 | 3.620 | 2.517 | 2.920 | 2.824 | 3.231 | 3.000 | 4.288 | 3.200 |
| 9 | HS 9 | 2.848 | 3.286 | 2.719 | 2.988 | 3.205 | 2.761 | 3.016 | 2.975 |
| 10 | HS 10 | 3.068 | 3.290 | 2.794 | 2.995 | 2.997 | 2.889 | 2.993 | 3.004 |
| 11 | HS 11 | 3.157 | 3.195 | 2.700 | 2.724 | 2.904 | 2.768 | 2.774 | 2.889 |
| 12 | HS 12 | 2.902 | 2.814 | 2.998 | 2.795 | 2.941 | 2.833 | 3.396 | 2.954 |
| 13 | HS 13 | 2.896 | 3.242 | 2.928 | 3.062 | 3.655 | 3.159 | 3.669 | 3.230 |

HS = Homogeneous sample


| Homogeneity between the samples |  |  |  |
| :---: | :---: | :---: | :---: |
| Analysis of variance: $a=0.05$ |  |  |  |
| standard deviation within the samples $\mathrm{S}_{\mathrm{w}}$ | $0.12$ | $\begin{gathered} \mathrm{M}_{\mathrm{ss}} \\ 2.971 \end{gathered}$ | $\begin{gathered} \text { RSD \% } \\ 2.1 \end{gathered}$ |
| standard deviation between the samples $\mathrm{s}_{\mathrm{b}}$ | 0.13 | $F_{\text {value }}$ | 1.768 |
| $\begin{aligned} & \text { test value } \\ & \mathrm{sb}^{2} / \mathrm{s}_{\mathrm{w}}{ }^{2} \end{aligned}$ | 1.21 | Characteristic no. for homogeneity between the samples | 0.68 |
| Homogeneity between the samples: No significant inhomogeneity |  |  |  |


| Homogeneity within the samples |  |  |  |
| :---: | :---: | :---: | :---: |
| Analysis of variance: $\mathrm{a}=0.05$ |  |  |  |
| standard deviation of homogeneous sample $\mathrm{SHs}^{2}$ | 0.11 | $\begin{gathered} \mathrm{M}_{\mathrm{HS}} \\ 3.017 \end{gathered}$ | $\begin{gathered} \mathrm{RSD}_{\text {Hs }}(\%) \\ 3.8 \end{gathered}$ |
|  |  | $\mathrm{F}_{\text {value }}$ | 1.98 |
| $\begin{aligned} & \text { test value } \\ & \mathrm{s}_{\mathrm{w}}{ }^{2} / \mathrm{s}_{\mathrm{HS}}{ }^{2} \end{aligned}$ | 1.03 | Characteristic no. for homogeneity within the samples | 0.52 |
| Homogeneity within the samples: No significant inhomogeneity |  |  |  |

ETV ICP OES-results (means of two spectral lines) measured on 7 different days.
Measurements, compilation of results: ESK, Ceramics GmbH \& Co.KG, Kempten; Germany Final evaluation: BAM, Federal Institute for Materials and Testing (Division I.1)

## Analyt Cu

mass fraction in mg/kg

| Serial number | Sample number | mean calculated from 2 lines (16.02.00) | mean calculated from 2 lines (21.02.00) | mean calculated from 2 lines (23.02.00) | mean calculated from 2 lines (02.06.01) | mean calculated from 2 lines (06.06.01) | mean calculated from 2 lines (12.06.01) | mean calculated from 2 lines (30.05.01) | mean | $\begin{array}{\|c\|} \hline \text { mean of } \\ \text { sub-samples } \\ 1-4 \\ \hline \end{array}$ | $\qquad$ | $\mathrm{RSD}_{\mathrm{w}}$ (rel.\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2/1 | 0.933 | 1.055 | 1.141 | 1.034 | 1.058 | 1.100 | 0.967 | 1.041 | 1.067 | 0.134 | 12.6 |
|  | 2/2 | 0.931 | 0.984 | 2.928 | 1.035 | 0.967 | 0.999 | 0.995 | 1.263 |  |  |  |
|  | 2/3 | 1.039 | 1.037 | 1.013 | 0.961 | 0.972 | 0.946 | 1.015 | 0.997 |  |  |  |
|  | 2/4 | 0.905 | 1.036 | 1.003 | 1.018 | 0.945 | 0.944 | 0.920 | 0.967 |  |  |  |
| 2 | 29/1 | 0.837 | 0.983 | 1.058 | 1.037 | 1.006 | 1.044 | 1.002 | 0.995 | 1.001 | 0.022 | 2.2 |
|  | 29/2 | 0.962 | 1.023 | 0.973 | 1.092 | 0.970 | 1.040 | 1.082 | 1.021 |  |  |  |
|  | 29/3 | 0.866 | 0.959 | 1.079 | 1.022 | 1.003 | 0.896 | 0.978 | 0.972 |  |  |  |
|  | 29/4 | 0.875 | 1.457 | 0.929 | 0.990 | 0.969 | 0.959 | 0.924 | 1.015 |  |  |  |
| 3 | 35/1 | 0.931 | 0.919 | 1.010 | 1.037 | 1.006 | 1.044 | 1.002 | 0.993 | 0.974 | 0.017 | 1.7 |
|  | 35/2 | 0.871 | 0.934 | 0.977 | 0.984 | 0.948 | 1.024 | 0.927 | 0.952 |  |  |  |
|  | 35/3 | 0.902 | 0.944 | 0.969 | 0.965 | 1.127 | 1.009 | 0.930 | 0.978 |  |  |  |
|  | 35/4 | 1.024 | 0.960 | 0.927 | 0.977 | 0.961 | 1.004 | 0.950 | 0.972 |  |  |  |
| 4 | 56/1 | 0.914 | 0.977 | 0.983 | 1.031 | 0.980 | 1.105 | 0.903 | 0.985 | 0.978 | 0.006 | 0.6 |
|  | 56/2 | 0.941 | 0.972 | 0.927 | 1.064 | 0.975 | 0.981 | 0.975 | 0.976 |  |  |  |
|  | 56/3 | 0.881 | 0.925 | 0.920 | 1.064 | 1.098 | 1.000 | 0.984 | 0.982 |  |  |  |
|  | 56/4 | 0.911 | 0.934 | 0.965 | 0.950 | 1.055 | 1.006 | 0.973 | 0.971 |  |  |  |
| 5 | 76/1 | 0.858 | 0.933 | 0.994 | 0.999 | 1.010 | 0.940 | 1.024 | 0.965 | 0.995 | 0.031 | 3.2 |
|  | 76/2 | 0.965 | 1.009 | 1.267 | 0.968 | 0.974 | 1.037 | 1.051 | 1.039 |  |  |  |
|  | 76/3 | 0.888 | 0.941 | 1.048 | 0.926 | 1.009 | 1.017 | 1.049 | 0.983 |  |  |  |
|  | 76/4 | 0.938 | 1.002 | 0.901 | 1.083 | 1.002 | 1.035 | 0.984 | 0.992 |  |  |  |
| 6 | 90/1 | 0.952 | 1.027 | 1.033 | 1.053 | 0.965 | 1.017 | 0.961 | 1.001 | 1.014 | 0.036 | 3.5 |
|  | 90/2 | 0.897 | 0.952 | 1.505 | 1.026 | 0.968 | 1.018 | 1.068 | 1.062 |  |  |  |
|  | 90/3 | 0.852 | 0.972 | 1.115 | 0.982 | 0.977 | 0.985 | 0.955 | 0.977 |  |  |  |
|  | 90/4 | 0.990 | 0.983 | 1.062 | 0.963 | 1.149 | 1.018 | 0.957 | 1.017 |  |  |  |
| 7 | 108/1 | 0.868 | 0.978 | 0.970 | 1.000 | 0.998 | 1.004 | 0.971 | 0.970 | 0.975 | 0.026 | 2.7 |
|  | 108/2 | 0.987 | 1.012 | 1.113 | 0.933 | 1.014 | 0.967 | 1.054 | 1.011 |  |  |  |
|  | 108/3 | 0.932 | 0.933 | 1.001 | 0.937 | 0.929 | 0.975 | 0.937 | 0.949 |  |  |  |
|  | 108/4 | 0.948 | 0.949 | 0.911 | 1.010 | 1.039 | 0.945 | 0.986 | 0.970 |  |  |  |
| 8 | 128/1 | 0.864 | 0.996 | 1.004 | 1.078 | 1.078 | 1.151 | 1.041 | 1.030 | 1.000 | 0.032 | 3.2 |
|  | 128/2 | 1.026 | 0.969 | 1.078 | 0.995 | 1.085 | 1.018 | 0.989 | 1.023 |  |  |  |
|  | 128/3 | 0.917 | 0.970 | 0.968 | 1.005 | 0.985 | 0.969 | 0.933 | 0.964 |  |  |  |
|  | 128/4 | 0.958 | 0.927 | 0.978 | 1.074 | 0.999 | 0.996 | 0.949 | 0.983 |  |  |  |

Analyt Cu

| Serial number | Sample number | mean calculated from 2 lines (16.02.00) | mean calculated from 2 lines (21.02.00) | mean calculated from 2 lines (23.02.00) | mean calculated from 2 lines (02.06.01) | mean calculated from 2 lines (06.06.01) | mean calculated from 2 lines (12.06.01) | mean calculated from 2 lines (30.05.01) | mean | mean of sub-samples 1-4 | SD of sub-samples 1-4 | RSD (rel.\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | 128/1 | 0864 | 0.996 | 1004 | 1078 | 1078 | 1151 | 1041 | 1.030 | 1.000 | 0.032 | 3.2 |
|  | 128/2 | 1.026 | 0.969 | 1.078 | 0.995 | 1.085 | 1.018 | 0.989 | 1.023 |  |  |  |
|  | 128/3 | 0.917 | 0.970 | 0.968 | 1.005 | 0.985 | 0.969 | 0.933 | 0.964 |  |  |  |
|  | 128/4 | 0.958 | 0.927 | 0.978 | 1.074 | 0.999 | 0.996 | 0.949 | 0.983 |  |  |  |
| 9 | 132/1 | 0.927 | 1033 | 0.970 | 1061 | 1562 | 0.994 | 0.953 | 1.072 | 1.057 | 0.085 | 8.1 |
|  | 132/2 | 1.016 | 1.391 | 1.595 | 0.952 | 0.792 | 0.918 | 0.979 | 1.092 |  |  |  |
|  | 132/3 | 1.028 | 0.950 | 1.867 | 0.930 | 1.023 | 1.003 | 1.104 | 1.129 |  |  |  |
|  | 132/4 | 0.834 | 0.950 | 0.930 | 0.922 | 0.980 | 0.986 | 0.936 | 0.934 |  |  |  |
| 10 | 156/1 | 1007 | 0930 | 0873 | 0937 | 0.979 | 1027 | 0935 | 0.956 | 0.976 | 0.031 | 3.1 |
|  | 156/2 | 0.917 | 1.051 | 1.107 | 0.988 | 0.971 | 0.934 | 1.002 | 0.996 |  |  |  |
|  | 156/3 | 0.854 | 1.001 | 1.158 | 0.999 | 1.000 | 1.049 | 0.989 | 1.007 |  |  |  |
|  | 156/4 | 0.835 | 0.952 | 0.948 | 0.926 | 0.991 | 0.997 | 0.960 | 0.944 |  |  |  |
| 11 | 164/1 | 0862 | 0.986 | 0.977 | 0980 | 1116 | 1053 | 1044 | 1.003 | 0.996 | 0.035 | 3.5 |
|  | 164/2 | 0.890 | 1.020 | 1.004 | 1.005 | 1.003 | 1.063 | 1.078 | 1.009 |  |  |  |
|  | 164/3 | 0.910 | 0.957 | 0.918 | 0.975 | 0.954 | 0.958 | 0.957 | 0.947 |  |  |  |
|  | 164/4 | 0.973 | 1.229 | 0.933 | 1.004 | 0.969 | 1.012 | 1.073 | 1.028 |  |  |  |
| 12 | 188/1 | 0.908 | 0959 | 08.96 | 1029 | 1038 | 0986 | 1043 | 0.980 | 1.002 | 0.047 | 4.6 |
|  | 188/2 | 0.994 | 1.000 | 1.019 | 1.007 | 0.965 | 1.085 | 1.081 | 1.022 |  |  |  |
|  | 188/3 | 0.831 | 0.976 | 0.929 | 1.026 | 0.993 | 0.921 | 0.973 | 0.950 |  |  |  |
|  | 188/4 | 0.864 | 1.439 | 0.908 | 1.036 | 1.062 | 0.944 | 1.140 | 1.056 |  |  |  |
| 13 | 195/1 | 0844 | 1009 | 0.918 | 0.980 | 1126 | 1031 | 1051 | 0.994 | 1.003 | 0.014 | 1.4 |
|  | 195/2 | 0.949 | 1.240 | 0.996 | 0.981 | 1.050 | 0.978 | 0.943 | 1.020 |  |  |  |
|  | 195/3 | 0.993 | 1.005 | 0.940 | 0.997 | 0.964 | 1.071 | 0.959 | 0.990 |  |  |  |
|  | 195/4 | 1.025 | 1.107 | 1.047 | 0.928 | 0.948 | 1.022 | 0.993 | 1.010 |  |  |  |
| 14 | 221/1 | 0868 | 0.938 | 0.955 | 1022 | 0.962 | 1095 | 0.945 | 0.970 | 0.980 | 0.012 | 1.2 |
|  | 221/2 | 0.907 | 0.981 | 0.983 | 0.925 | 1.138 | 0.914 | 0.981 | 0.975 |  |  |  |
|  | 221/3 | 0.915 | 0.942 | 1.007 | 1.017 | 1.003 | 0.966 | 0.991 | 0.977 |  |  |  |
|  | 221/4 | 1.209 | 0.951 | 0.928 | 0.964 | 0.936 | 1.000 | 0.988 | 0.996 |  |  |  |
| 15 | 229/1 | 0852 | 1086 | 0.916 | 1106 | 1020 | 0.914 | 0.925 | 0.974 | 0.988 | 0.032 | 3.2 |
|  | 229/2 | 1.015 | 0.958 | 1.033 | 0.980 | 1.059 | 1.050 | 0.974 | 1.010 |  |  |  |
|  | 229/3 | 0.943 | 1.012 | 1.045 | 1.059 | 1.041 | 0.963 | 1.058 | 1.017 |  |  |  |
|  | 229/4 | 0.913 | 0.956 | 0.922 | 0.981 | 0.964 | 0.925 | 0.983 | 0.949 |  |  |  |
| 16 | 253/1 | 0910 | 1016 | 0898 | 1004 | 0993 | 0985 | 0994 | 0.971 | 0.993 | 0.031 | 3.1 |
|  | 253/2 | 1.021 | 1.100 | 0.949 | 0.990 | 0.977 | 0.933 | 0.939 | 0.987 |  |  |  |
|  | 253/3 | 0.931 | 0.982 | 0.973 | 1.000 | 0.994 | 0.992 | 0.947 | 0.974 |  |  |  |
|  | 253/4 | 0.853 | 1.386 | 0.969 | 1.020 | 1.071 | 0.998 | 0.965 | 1.037 |  |  |  |
| 17 | 264/1 | 1002 | 0.975 | 1006 | 0.998 | 0.976 | 1035 | 1017 | 1.001 | 0.989 | 0.019 | 1.9 |
|  | 264/2 | 0.954 | 1.005 | 1.010 | 0.905 | 0.948 | 0.991 | 1.002 | 0.974 |  |  |  |
|  | 264/3 | 0.846 | 0.950 | 1.043 | 1.024 | 1.000 | 0.946 | 1.000 | 0.973 |  |  |  |
|  | 264/4 | 1.003 | 1.046 | 0.980 | 1.005 | 0.943 | 0.989 | 1.093 | 1.008 |  |  |  |

## Analyt Cu

| Serial number | Sample number | mean calculated from 2 lines (16.02.00) | mean calculated from 2 lines (21.02.00) | mean calculated from 2 lines (23.02.00) | mean calculated from 2 lines (02.06.01) | mean calculated from 2 lines (06.06.01) | mean calculated from 2 lines (12.06.01) | mean calculated from 2 lines (30.05.01) | mean | $\begin{gathered} \hline \hline \text { mean of } \\ \text { sub- } \\ \text { samples } \\ 1-4 \\ \hline \hline \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { SD of } \\ \text { sub-samples } \\ 1-4 \\ \hline \end{array}$ | RSD (rel.\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 18 | 279/1 | 0.964 | 0.936 | 0.984 | 1.044 | 0.985 | 1.078 | 1.009 | 1.000 | 0.985 | 0.016 | 1.6 |
|  | 279/2 | 0.940 | 0.975 | 0.930 | 0.935 | 0.964 | 0.955 | 1.037 | 0.962 |  |  |  |
|  | 279/3 | 0.871 | 0.997 | 0.909 | 1.178 | 1.053 | 0.941 | 0.984 | 0.990 |  |  |  |
|  | 279/4 | 0.914 | 0.956 | 1.110 | 0.961 | 0.953 | 1.061 | 0.968 | 0.989 |  |  |  |
| 19 | 294/1 | 0.998 | 0.988 | 2.922 | 0.945 | 1.001 | 0.994 | 0.982 | 1.261 | 1.059 | 0.135 | 12.8 |
|  | 294/2 | 0.838 | 1.249 | 0.914 | 0.996 | 0.994 | 0.948 | 1.057 | 0.999 |  |  |  |
|  | 294/3 | 0.919 | 1.264 | 0.920 | 0.926 | 0.959 | 0.985 | 1.010 | 0.998 |  |  |  |
|  | 294/4 | 0.990 | 0.936 | 0.903 | 1.040 | 0.971 | 1.044 | 0.958 | 0.978 |  |  |  |
| 20 | 307/1 | 0.978 | 1.039 | 1.593 | 0.997 | 0.958 | 0.911 | 1.019 | 1.071 | 1.012 | 0.046 | 4.6 |
|  | 307/2 | 0.924 | 1.204 | 0.934 | 0.934 | 1.062 | 0.980 | 1.049 | 1.012 |  |  |  |
|  | 307/3 | 0.951 | 0.925 | 0.955 | 1.003 | 1.022 | 0.982 | 1.226 | 1.009 |  |  |  |
|  | 307/4 | 0.915 | 0.910 | 0.937 | 1.017 | 0.956 | 0.947 | 1.020 | 0.957 |  |  |  |

$\mathrm{M}_{\text {Ss }}$ - mean
of means of
sub-samples
1.002

SD of means
of the sub-
samples 1-4 0.028
RSD (rel.\%) 2.790 mean RSD
(\%) 3.9

## Analyt Cu

HS = Homogeneous sample

| HS = Homogeneous sample |  |  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Serial <br> number | Sample <br> number | mean <br> calculated <br> from 2 lines <br> $(16.02 .00)$ | mean <br> calculated <br> from 2 lines <br> $(21.02 .00)$ | mean <br> calculated <br> from 2 lines <br> $(23.02 .00)$ | mean <br> calculated <br> from 2 lines <br> $(02.06 .01)$ | mean <br> calculated <br> from 2 lines <br> $(06.06 .01)$ | mean <br> calculated <br> from 2 lines <br> $(12.06 .01)$ | mean <br> calculated <br> from 2 lines <br> $(30.05 .01)$ | mean |
| 1 | HS 1 | 0.956 | 0.968 | 1.024 | 0.986 | 1.012 | 1.035 | 0.902 | $\mathbf{0 . 9 8 3}$ |
| 2 | HS 2 | 0.878 | 0.951 | 0.947 | 1.093 | 1.183 | 1.069 | 1.048 | $\mathbf{1 . 0 2 4}$ |
| 3 | HS 3 | 0.934 | 0.902 | 1.110 | 1.000 | 0.981 | 1.028 | 0.952 | $\mathbf{0 . 9 8 7}$ |
| 4 | HS 4 | 0.961 | 0.934 | 0.917 | 1.007 | 1.020 | 1.113 | 0.955 | $\mathbf{0 . 9 8 7}$ |
| 5 | HS 5 | 0.848 | 1.105 | 1.014 | 0.970 | 1.003 | 0.966 | 1.002 | $\mathbf{0 . 9 8 7}$ |
| 6 | HS 6 | 0.933 | 0.968 | 0.987 | 1.025 | 0.988 | 1.041 | 0.975 | $\mathbf{0 . 9 8 8}$ |
| 7 | HS 7 | 0.892 | 0.966 | 1.070 | 0.996 | 0.898 | 0.994 | 0.963 | $\mathbf{0 . 9 6 8}$ |
| 8 | HS 8 | 0.968 | 1.394 | 1.010 | 0.968 | 1.028 | 0.983 | 1.371 | $\mathbf{1 . 1 0 3}$ |
| 9 | HS 9 | 0.999 | 0.976 | 0.979 | 1.076 | 1.030 | 1.018 | 0.939 | $\mathbf{1 . 0 0 2}$ |
| 10 | HS 10 | 1.124 | 0.963 | 0.924 | 0.955 | 1.016 | 1.008 | 0.937 | $\mathbf{0 . 9 8 9}$ |
| 11 | HS 11 | 0.893 | 1.010 | 0.927 | 0.962 | 0.996 | 0.945 | 0.953 | $\mathbf{0 . 9 5 5}$ |
| 12 | HS 12 | 0.904 | 0.954 | 1.046 | 0.932 | 0.967 | 0.931 | 1.562 | $\mathbf{1 . 0 4 2}$ |
| 13 | HS 13 | 0.863 | 0.952 | 0.909 | 0.965 | 1.168 | 0.987 | 1.224 | $\mathbf{1 . 0 1 0}$ |

HS = Homogeneous sample

| 14 | HS 14 | 0.930 | 1.000 | 0.915 | 1.025 | 1.087 | 1.013 | 0.997 | $\mathbf{0 . 9 9 5}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15 | HS 15 | 0.932 | 1.018 | 0.973 | 0.983 | 0.979 | 1.006 | 1.100 | $\mathbf{0 . 9 9 9}$ |
| 16 | HS 16 | 1.202 | 0.934 | 0.931 | 0.969 | 0.962 | 0.970 | 1.002 | $\mathbf{0 . 9 9 6}$ |
| 17 | HS 17 | 1.521 | 0.989 | 1.045 | 0.933 | 0.995 | 0.964 | 0.948 | $\mathbf{1 . 0 5 6}$ |
| 18 | HS 18 | 0.866 | 0.940 | 0.958 | 0.961 | 1.018 | 1.017 | 0.948 | $\mathbf{0 . 9 5 8}$ |
| 19 | HS 19 | 0.947 | 0.979 | 1.009 | 0.995 | 0.967 | 0.993 | 1.011 | $\mathbf{0 . 9 8 6}$ |
| 20 | HS 20 | 0.916 | 0.973 | 1.014 | 1.077 | 0.971 | $\mathbf{1 . 0 3 1}$ | 0.953 | $\mathbf{0 . 9 9 1}$ |


| $\mathbf{M}_{\text {HS }}$ - mean of <br> homogeneous <br> sample | 1.000 |
| :--- | :---: |
| SD $_{\text {HS }}$ | 0.034 |
| RSD $_{\text {HS }}$ (\%) | 3.4 |


| Homogeneity between the samples |  |  |  |
| :---: | :---: | :---: | :---: |
| Analysis of variance: $\quad \mathrm{a}=0.05$ |  |  |  |
| standard deviation within the samples $\mathrm{S}_{\mathrm{w}}$ | 0.05 | $\begin{gathered} \mathrm{M}_{\mathrm{Ss}} \\ 1.002 \end{gathered}$ | RSD \% $2.8$ |
| standard deviation between the samples $\mathrm{S}_{\mathrm{b}}$ | 0.06 | $F_{\text {value }}$ | 1.768 |
| test value $\mathrm{Sb}_{\mathrm{b}} / \mathrm{s}_{\mathrm{w}}{ }^{2}$ | 1.09 | Characteristic no. for homogeneity between the samples | 0.61 |
| Homogeneity between the samples: No significant inhomogeneity |  |  |  |


| Homogeneity within the samples |  |  |  |
| :---: | :---: | :---: | :---: |
| Analysis of variance: $\mathrm{a}=0.05$ |  |  |  |
| standard deviation of homogeneous sample $\mathrm{S}_{\mathrm{Hs}}$ | 0.03 | $\begin{gathered} \mathrm{M}_{\mathrm{HS}} \\ 1.000 \end{gathered}$ | $\begin{gathered} \mathrm{RSD}_{\mathrm{HS}}(\%) \\ 3.4 \end{gathered}$ |
|  |  | $\mathrm{F}_{\text {value }}$ | 1.98 |
| test value $\mathrm{sw}^{2} / \mathrm{sHS}^{2}$ | 2.44 | Characteristic no. for homogeneity within the samples | 1.23 |
| Homogeneity within the samples: <br> Significant not very strong inhomogeneity |  |  |  |

ETV ICP OES-results (means of 3 spectral lines) measured on 4 different days.
Measurements, compilation of results: ESK, Ceramics GmbH \& Co.KG, Kempten; Germany Final evaluation: BAM, Federal Institute for Materials and Testing (Division I.1)

## Analyt Fe

mass fraction in $\mathrm{mg} / \mathrm{kg}$

| Serial number | Sample number | mean calculated from 3 lines (02.06.01) | mean calculated from 3 lines (06.06.01) | mean calculated from 3 lines (12.06.01) | mean calculated from 3 lines (30.05.01) | mean | mean of subsamples 1-4 | SD of subsamples 1-4 | RSD ${ }_{\text {w }}$ (rel.\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $2 / 1$ | 171765 | 164446 | 163633 | 1608.94 | 165.2 | 160.9 | 3.8 | 2.4 |
|  | 2/2 | 155.474 | 158.687 | 156.403 | 165.963 | 159.1 |  |  |  |
|  | 2/3 | 166.957 | 161.354 | 162.461 | 160.069 | 162.7 |  |  |  |
|  | 2/4 | 163.843 | 152.384 | 157.159 | 152.721 | 156.5 |  |  |  |
| 2 | 29/1 | 170087 | 161300 | 164764 | 153908 | 162.5 | 156.4 | 6.4 | 4.1 |
|  | 29/2 | 162.238 | 157.103 | 164.627 | 160.200 | 161.0 |  |  |  |
|  | 29/3 | 156.294 | 150.516 | 149.211 | 140.875 | 149.2 |  |  |  |
|  | 29/4 | 158.533 | 151.534 | 151.872 | 148.601 | 152.6 |  |  |  |
| 3 | 35/1 | 1586.96 | 160611 | 171778 | 163621 | 163.7 | 160.8 | 3.3 | 2.0 |
|  | 35/2 | 163.075 | 165.411 | 159.554 | 165.798 | 163.5 |  |  |  |
|  | 35/3 | 167.354 | 156.393 | 157.094 | 148.505 | 157.3 |  |  |  |
|  | 35/4 | 156.864 | 159.436 | 157.407 | 160.454 | 158.5 |  |  |  |
| 4 | 56/1 | 168424 | 156648 | 158125 | 159040 | 160.6 | 160.7 | 1.5 | 1.0 |
|  | 56/2 | 160.891 | 161.304 | 160.898 | 164.046 | 161.8 |  |  |  |
|  | 56/3 | 152.371 | 166.644 | 162.919 | 152.485 | 158.6 |  |  |  |
|  | 56/4 | 173.086 | 160.676 | 162.877 | 151.131 | 161.9 |  |  |  |
| 5 | 76/1 | 166858 | 166387 | 156642 | 157460 | 161.8 | 160.8 | 4.6 | 2.8 |
|  | 76/2 | 160.827 | 167.473 | 161.358 | 172.411 | 165.5 |  |  |  |
|  | 76/3 | 149.401 | 168.546 | 150.645 | 149.534 | 154.5 |  |  |  |
|  | 76/4 | 161.141 | 158.887 | 162.631 | 162.545 | 161.3 |  |  |  |
| 6 | 90/1 | 163652 | 165131 | 1653.99 | 156.511 | 162.7 | 162.8 | 2.1 | 1.3 |
|  | 90/2 | 159.766 | 155.371 | 153.346 | 173.187 | 160.4 |  |  |  |
|  | 90/3 | 161.257 | 161.097 | 174.584 | 165.024 | 165.5 |  |  |  |
|  | 90/4 | 158.533 | 168.867 | 166.902 | 156.411 | 162.7 |  |  |  |
| 7 | 108/1 | 162681 | 163086 | 164277 | 162632 | 163.2 | 160.5 | 3.4 | 2.1 |
|  | 108/2 | 163.514 | 160.687 | 159.973 | 171.189 | 163.8 |  |  |  |
|  | 108/3 | 158.534 | 163.117 | 155.064 | 154.382 | 157.8 |  |  |  |
|  | 108/4 | 161.925 | 158.857 | 158.255 | 150.382 | 157.4 |  |  |  |
| 8 | 128/1 | 168840 | 161.968 | 159.993 | 157275 | 162.0 | 159.3 | 2.7 | 1.7 |
|  | 128/2 | 155.056 | 165.455 | 162.091 | 160.045 | 160.7 |  |  |  |
|  | 128/3 | 160.426 | 157.446 | 150.755 | 154.977 | 155.9 |  |  |  |
|  | 128/4 | 155.685 | 165.816 | 160.368 | 152.375 | 158.6 |  |  |  |

## Analyt Fe

| Serial number | Sample number | mean calculated from 3 lines (02.06.01) | mean calculated from 3 lines (06.06.01) | mean calculated from 3 lines (12.06.01) | mean calculated from 3 lines $(30.05 .01)$ | mean | $\begin{gathered} \text { mean of } \\ \text { sub-samples } \\ 1-4 \\ \hline \hline \end{gathered}$ | $\begin{gathered} \text { SD of } \\ \text { sub-samples } \\ 1-4 \\ \hline \hline \end{gathered}$ | RSD (rel.\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | 108/1 | 162681 | 163086 | 164277 | 162632 | 163.2 | 160.5 | 3.4 | 2.1 |
|  | 108/2 | 163.514 | 160.687 | 159.973 | 171.189 | 163.8 |  |  |  |
|  | 108/3 | 158.534 | 163.117 | 155.064 | 154.382 | 157.8 |  |  |  |
|  | 108/4 | 161.925 | 158.857 | 158.255 | 150.382 | 157.4 |  |  |  |
| 8 | 128/1 | 168840 | 161.968 | 159.993 | 157275 | 162.0 | 159.3 | 2.7 | 1.7 |
|  | 128/2 | 155.056 | 165.455 | 162.091 | 160.045 | 160.7 |  |  |  |
|  | 128/3 | 160.426 | 157.446 | 150.755 | 154.977 | 155.9 |  |  |  |
|  | 128/4 | 155.685 | 165.816 | 160.368 | 152.375 | 158.6 |  |  |  |
| 9 | 132/1 | 168415 | 168.944 | 162079 | 168.995 | 167.1 | 159.5 | 5.4 | 3.4 |
|  | 132/2 | 155.857 | 152.680 | 154.965 | 163.681 | 156.8 |  |  |  |
|  | 132/3 | 161.033 | 164.722 | 162.634 | 148.437 | 159.2 |  |  |  |
|  | 132/4 | 148.366 | 155.375 | 162.572 | 153.042 | 154.8 |  |  |  |
| 10 | 156/1 | 1560.92 | 166822 | 156.519 | 162796 | 160.6 | 159.0 | 1.1 | 0.7 |
|  | 156/2 | 158.182 | 157.896 | 159.017 | 159.367 | 158.6 |  |  |  |
|  | 156/3 | 158.910 | 161.060 | 155.975 | 156.812 | 158.2 |  |  |  |
|  | 156/4 | 162.220 | 158.023 | 154.850 | 159.277 | 158.6 |  |  |  |
| 11 | 164/1 | 155.986 | 164487 | 165033 | 162.904 | 162.1 | 159.6 | 2.1 | 1.3 |
|  | 164/2 | 157.987 | 158.106 | 156.558 | 167.726 | 160.1 |  |  |  |
|  | 164/3 | 162.359 | 162.774 | 151.102 | 152.371 | 157.2 |  |  |  |
|  | 164/4 | 155.803 | 157.914 | 158.737 | 164.122 | 159.1 |  |  |  |
| 12 | 188/1 | 149520 | 165168 | 155213 | 165154 | 158.8 | 157.4 | 1.3 | 0.8 |
|  | 188/2 | 160.883 | 151.185 | 159.009 | 161.354 | 158.1 |  |  |  |
|  | 188/3 | 150.756 | 157.103 | 163.399 | 151.433 | 155.7 |  |  |  |
|  | 188/4 | 163.058 | 160.028 | 153.124 | 152.695 | 157.2 |  |  |  |
| 13 | 195/1 | 158311 | 164582 | 171242 | 156668 | 162.7 | 159.7 | 2.1 | 1.3 |
|  | 195/2 | 152.973 | 163.142 | 160.024 | 154.756 | 157.7 |  |  |  |
|  | 195/3 | 166.326 | 149.227 | 159.163 | 161.541 | 159.1 |  |  |  |
|  | 195/4 | 159.525 | 154.476 | 154.458 | 168.337 | 159.2 |  |  |  |
| 14 | 221/1 | 156543 | 164018 | 16.9788 | 151922 | 160.6 | 157.7 | 2.4 | 1.5 |
|  | 221/2 | 147.313 | 161.556 | 147.304 | 165.274 | 155.4 |  |  |  |
|  | 221/3 | 148.276 | 158.372 | 159.971 | 158.366 | 156.2 |  |  |  |
|  | 221/4 | 165.529 | 155.816 | 159.086 | 154.686 | 158.8 |  |  |  |
| 15 | 229/1 | 157750 | 161082 | 166947 | 159270 | 161.3 | 158.3 | 2.7 | 1.7 |
|  | 229/2 | 151.159 | 154.063 | 158.466 | 158.531 | 155.6 |  |  |  |
|  | 229/3 | 159.199 | 157.921 | 157.746 | 163.908 | 159.7 |  |  |  |
|  | 229/4 | 153.607 | 160.141 | 150.737 | 161.717 | 156.6 |  |  |  |
| 16 | 253/1 | 1568.92 | 160275 | 167.979 | 153739 | 159.7 | 158.7 | 2.3 | 1.4 |
|  | 253/2 | 163.532 | 160.303 | 156.835 | 155.654 | 159.1 |  |  |  |
|  | 253/3 | 158.643 | 153.669 | 168.266 | 162.096 | 160.7 |  |  |  |
|  | 253/4 | 163.019 | 155.834 | 147.854 | 155.199 | 155.5 |  |  |  |

Analyt Fe

| Serial number | Sample number | mean calculated from 3 lines (02.06.01) | mean calculated from 3 lines (06.06.01) | mean calculated from 3 lines (12.06.01) | mean calculated from 3 lines (30.05.01) | mean | $\qquad$ | $\begin{gathered} \text { SD of } \\ \text { sub-samples } \\ 1-4 \\ \hline \hline \end{gathered}$ | RSD (rel.\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 17 | 264/1 | 167.475 | 163.090 | 164.563 | 168.105 | 165.8 | 159.9 | 5.7 | 3.6 |
|  | 264/2 | 143.379 | 156.118 | 161.590 | 152.490 | 153.4 |  |  |  |
|  | 264/3 | 165.787 | 160.838 | 164.788 | 162.803 | 163.6 |  |  |  |
|  | 264/4 | 163.189 | 153.513 | 159.982 | 151.240 | 157.0 |  |  |  |
| 18 | 279/1 | 153.819 | 160.964 | 155.767 | 168.635 | 159.8 | 157.0 | 3.9 | 2.5 |
|  | 279/2 | 157.001 | 159.859 | 157.983 | 166.313 | 160.3 |  |  |  |
|  | 279/3 | 145.307 | 153.118 | 151.033 | 158.235 | 151.9 |  |  |  |
|  | 279/4 | 160.105 | 161.997 | 144.622 | 157.603 | 156.1 |  |  |  |
| 19 | 294/1 | 161.305 | 155.988 | 155.802 | 157.376 | 157.6 | 158.0 | 2.7 | 1.7 |
|  | 294/2 | 162.013 | 163.108 | 156.800 | 164.856 | 161.7 |  |  |  |
|  | 294/3 | 151.299 | 149.872 | 156.415 | 173.445 | 157.8 |  |  |  |
|  | 294/4 | 157.883 | 153.569 | 157.292 | 151.458 | 155.1 |  |  |  |
| 20 | 307/1 | 158.471 | 154.360 | 160.587 | 159.453 | 158.2 | 157.8 | 2.3 | 1.5 |
|  | 307/2 | 155.424 | 157.050 | 154.254 | 161.000 | 156.9 |  |  |  |
|  | 307/3 | 159.752 | 159.358 | 158.903 | 165.032 | 160.8 |  |  |  |
|  | 307/4 | 160.699 | 155.873 | 151.769 | 152.434 | 155.2 |  |  |  |

$\mathrm{M}_{\mathrm{ss}}$ - mean of
means of the sub-
samples 1-4
159.1

SD of means of
the sub-samples
1-4
1.6

RSD (rel.\%) $\qquad$ 1.0 $\qquad$ 1.9 -

## Analyt Fe

HS = Homogeneous sample

| Serial <br> number | Sample <br> number | mean <br> calculated <br> from 3 lines <br> $(02.06 .01)$ | mean <br> calculated <br> from 3 lines <br> $(06.06 .01)$ | mean <br> calculated <br> from 3 lines <br> $(12.06 .01)$ | mean <br> calculated <br> from 3 lines <br> $(30.05 .01)$ | mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | HS 1 | 164.585 | 165.699 | 158.600 | 154.857 | $\mathbf{1 6 0 . 9}$ |
| 2 | HS 2 | 166.950 | 162.163 | 163.785 | 159.090 | $\mathbf{1 6 3 . 0}$ |
| 3 | HS 3 | 158.588 | 158.824 | 169.264 | 158.613 | $\mathbf{1 6 1 . 3}$ |
| 4 | HS 4 | 154.658 | 163.140 | 165.678 | 158.040 | $\mathbf{1 6 0 . 4}$ |
| 5 | HS 5 | 158.509 | 158.346 | 159.972 | 169.602 | $\mathbf{1 6 1 . 6}$ |
| 6 | HS 6 | 156.396 | 159.127 | 163.222 | 164.399 | $\mathbf{1 6 0 . 8}$ |
| 7 | HS 7 | 160.893 | 152.456 | 160.854 | 159.070 | $\mathbf{1 5 8 . 3}$ |
| 8 | HS 8 | 157.712 | 167.247 | 150.611 | 156.095 | $\mathbf{1 5 7 . 9}$ |

HS = Homogeneous sample

| 9 | HS 9 | 154.603 | 166.408 | 152.023 | 174.502 | $\mathbf{1 6 1 . 9}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | HS 10 | 164.460 | 159.821 | 163.169 | 159.632 | $\mathbf{1 6 1 . 8}$ |
| 11 | HS 11 | 159.590 | 162.147 | 162.692 | 161.978 | $\mathbf{1 6 1 . 6}$ |
| 12 | HS 12 | 151.455 | 161.528 | 155.022 | 159.801 | $\mathbf{1 5 7 . 0}$ |
| 13 | HS 13 | 157.140 | 162.778 | 167.087 | 154.076 | $\mathbf{1 6 0 . 3}$ |
| 14 | HS 14 | 159.493 | 160.262 | 164.100 | 155.766 | $\mathbf{1 5 9 . 9}$ |
| 15 | HS 15 | 159.151 | 164.393 | 158.964 | 161.778 | $\mathbf{1 6 1 . 1}$ |
| 16 | HS 16 | 158.843 | 160.546 | 160.376 | 151.054 | $\mathbf{1 5 7 . 7}$ |
| 17 | HS 17 | 156.678 | 158.500 | 157.632 | 157.086 | $\mathbf{1 5 7 . 5}$ |
| 18 | HS 18 | 153.736 | 155.120 | 162.041 | 160.137 | $\mathbf{1 5 7 . 8}$ |
| 19 | HS 19 | 159.129 | 161.368 | 160.094 | 154.561 | $\mathbf{1 5 8 . 8}$ |
| 20 | HS 20 | 157.238 | 157.920 | 154.234 | 157.402 | $\mathbf{1 5 6 . 7}$ |


| Homogeneity between the samples |  |  |  |
| :---: | :---: | :---: | :---: |
| Analysis of variance: $\mathrm{a}=0.05$ |  |  |  |
| standard deviation within the samples $S_{w}$ | 3.4 | $\begin{gathered} \mathrm{M}_{\mathrm{ss}} \\ 159.1 \end{gathered}$ | RSD \% <br> 1.0 |
| standard deviation between the samples $\mathrm{S}_{\mathrm{b}}$ | 3.2 | $F_{\text {value }}$ | 1.768 |
| test value $\mathrm{s}_{\mathrm{b}}{ }^{2} / \mathrm{s}_{\mathrm{w}}{ }^{2}$ | 0.88 | Characteristic no. for homogeneity between the samples | 0.50 |
| Homogeneity between the samples: No significant inhomogeneity |  |  |  |


| Homogeneity within the samples |  |  |  |
| :---: | :---: | :---: | :---: |
| Analysis of variance: $\mathrm{a}=0.05$ |  |  |  |
| standard deviation of homogeneous sample $\mathrm{SHS}_{\mathrm{H}}$ | 1.9 | $\mathrm{M}_{\mathrm{HS}}$ 159.8 | $\begin{gathered} \mathrm{RSD}_{\text {HS }} \text { \% } \\ 1.2 \\ \hline \end{gathered}$ |
|  |  | $F_{\text {value }}$ | 1.98 |
| $\begin{aligned} & \text { test value } \\ & \mathrm{s}_{\mathrm{w}}{ }^{2} / \mathrm{s}_{\mathrm{HS}}{ }^{2} \end{aligned}$ | 3.16 | Characteristic no. for homogeneity within the samples | 1.59 |
| Homogeneity within the samples: <br> Significant not very strong inhomogeneity |  |  |  |

ETV ICP OES-results (one spectral line) measured on 4 different days.
Measurements, compilation of results: ESK, Ceramics GmbH \& Co.KG, Kempten; Germany
Final evaluation: BAM, Federal Institute for Materials and Testing (Division I.1)
Analyt Mg
mass fraction in $\mathrm{mg} / \mathrm{kg}$

| Serial number | Sample number | $\begin{gathered} 1 \text { line } \\ (02.06 .01) \\ \hline \hline \end{gathered}$ | $\begin{gathered} 1 \text { line } \\ (06.06 .01) \\ \hline \hline \end{gathered}$ | $\begin{gathered} 1 \text { line } \\ (12.06 .01) \\ \hline \hline \end{gathered}$ | $\begin{gathered} 1 \text { line } \\ (30.05 .01) \\ \hline \end{gathered}$ | mean | mean of sub-samples 1-4 | SD of sub-samples $1-4$ | $\begin{gathered} \mathrm{RSD}_{\mathrm{w}} \\ \text { (rel.\%) } \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2/1 | 6.140 | 6.122 | 7.229 | 6.233 | 6.431 | 6.101 | 0.24 | 3.9 |
|  | 2/2 | 6.123 | 6.184 | 6.145 | 5.590 | 6.011 |  |  |  |
|  | 2/3 | 5.914 | 6.267 | 6.081 | 6.079 | 6.085 |  |  |  |
|  | 2/4 | 5.934 | 5.850 | 6.026 | 5.693 | 5.875 |  |  |  |
| 2 | 29/1 | 6.052 | 6.851 | 5.982 | 6.099 | 6.246 | 5.985 | 0.18 | 3.0 |
|  | 29/2 | 5.713 | 5.908 | 5.988 | 5.787 | 5.849 |  |  |  |
|  | 29/3 | 6.102 | 6.064 | 5.688 | 5.869 | 5.931 |  |  |  |
|  | 29/4 | 6.077 | 6.045 | 5.762 | 5.765 | 5.912 |  |  |  |
| 3 | 35/1 | 5.848 | 6.044 | 5.875 | 7.129 | 6.224 | 6.041 | 0.13 | 2.1 |
|  | 35/2 | 5.982 | 6.030 | 5.962 | 5.827 | 5.950 |  |  |  |
|  | 35/3 | 5.953 | 6.023 | 5.933 | 6.260 | 6.042 |  |  |  |
|  | 35/4 | 6.059 | 5.722 | 6.122 | 5.886 | 5.947 |  |  |  |
| 4 | 56/1 | 5.987 | 5.920 | 6.223 | 5.723 | 5.963 | 6.045 | 0.11 | 1.9 |
|  | 56/2 | 6.013 | 6.049 | 6.055 | 6.048 | 6.041 |  |  |  |
|  | 56/3 | 6.043 | 6.503 | 6.122 | 6.167 | 6.209 |  |  |  |
|  | 56/4 | 6.100 | 6.068 | 6.084 | 5.615 | 5.967 |  |  |  |
| 5 | 76/1 | 5.799 | 5.853 | 6.042 | 5.993 | 5.922 | 6.000 | 0.05 | 0.9 |
|  | 76/2 | 5.820 | 5.986 | 6.050 | 6.180 | 6.009 |  |  |  |
|  | 76/3 | 5.923 | 6.215 | 6.075 | 5.905 | 6.030 |  |  |  |
|  | 76/4 | 6.042 | 6.141 | 5.967 | 6.006 | 6.039 |  |  |  |
| 6 | 90/1 | 6.513 | 6.101 | 5.954 | 6.097 | 6.166 | 6.051 | 0.08 | 1.4 |
|  | 90/2 | 5.974 | 5.953 | 6.118 | 6.047 | 6.023 |  |  |  |
|  | 90/3 | 5.895 | 5.873 | 6.231 | 5.901 | 5.975 |  |  |  |
|  | 90/4 | 5.970 | 6.096 | 6.202 | 5.883 | 6.038 |  |  |  |
| 7 | 108/1 | 6.152 | 5.967 | 5.999 | 6.196 | 6.079 | 6.069 | 0.05 | 0.8 |
|  | 108/2 | 5.990 | 6.013 | 6.274 | 6.201 | 6.120 |  |  |  |
|  | 108/3 | 5.801 | 6.003 | 6.296 | 5.926 | 6.007 |  |  |  |
|  | 108/4 | 5.942 | 5.988 | 6.260 | 6.093 | 6.071 |  |  |  |
| 8 | 128/1 | 5.803 | 6.368 | 5.993 | 6.458 | 6.155 | 6.067 | 0.07 | 1.1 |
|  | 128/2 | 6.020 | 6.051 | 6.030 | 6.184 | 6.071 |  |  |  |
|  | 128/3 | 6.039 | 5.977 | 5.785 | 6.192 | 5.998 |  |  |  |
|  | 128/4 | 6.007 | 5.891 | 6.378 | 5.899 | 6.044 |  |  |  |

Analyt Mg

| Serial number | Sample number | $\begin{gathered} 1 \text { line } \\ (02.06 .01) \\ \hline \end{gathered}$ | $\begin{gathered} 1 \text { line } \\ (06.06 .01) \\ \hline \end{gathered}$ | $\begin{gathered} 1 \text { line } \\ (12.06 .01) \\ \hline \end{gathered}$ | $\begin{gathered} 1 \text { line } \\ (30.05 .01) \\ \hline \end{gathered}$ | mean | mean of sub-samples $1-4$ | $\begin{gathered} \hline \hline \text { SD of } \\ \text { sub-samples } \\ 1-4 \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{RSD}_{\mathrm{w}} \\ (\mathrm{rel.} . \%) \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | 132/1 | 6.306 | 5.977 | 6.185 | 5.965 | 6.108 | 6.002 | 0.13 | 2.2 |
|  | 132/2 | 5.899 | 6.382 | 5.794 | 6.254 | 6.083 |  |  |  |
|  | 132/3 | 6.259 | 6.123 | 5.955 | 5.658 | 5.999 |  |  |  |
|  | 132/4 | 5.565 | 5.733 | 6.019 | 5.963 | 5.820 |  |  |  |
| 10 | 156/1 | 5.933 | 6.351 | 6.188 | 5.791 | 6.066 | 6.038 | 0.05 | 0.8 |
|  | 156/2 | 5.805 | 6.110 | 5.716 | 6.287 | 5.980 |  |  |  |
|  | 156/3 | 6.031 | 6.310 | 5.914 | 5.827 | 6.020 |  |  |  |
|  | 156/4 | 6.019 | 6.116 | 6.129 | 6.085 | 6.087 |  |  |  |
| 11 | 164/1 | 6.017 | 6.033 | 6.355 | 6.078 | 6.120 | 6.114 | 0.13 | 2.1 |
|  | 164/2 | 6.112 | 6.175 | 6.048 | 6.197 | 6.133 |  |  |  |
|  | 164/3 | 5.924 | 5.954 | 5.894 | 6.014 | 5.947 |  |  |  |
|  | 164/4 | 6.162 | 5.866 | 6.060 | 6.930 | 6.254 |  |  |  |
| 12 | 188/1 | 6.154 | 5.926 | 5.715 | 6.184 | 5.995 | 5.978 | 0.07 | 1.2 |
|  | 188/2 | 5.791 | 6.010 | 5.982 | 5.981 | 5.941 |  |  |  |
|  | 188/3 | 6.074 | 5.991 | 5.975 | 5.582 | 5.906 |  |  |  |
|  | 188/4 | 6.112 | 6.073 | 5.853 | 6.245 | 6.071 |  |  |  |
| 13 | 195/1 | 5.991 | 6.027 | 6.177 | 5.696 | 5.973 | 6.010 | 0.06 | 0.9 |
|  | 195/2 | 5.750 | 6.058 | 6.075 | 6.119 | 6.000 |  |  |  |
|  | 195/3 | 6.183 | 5.951 | 6.088 | 6.146 | 6.092 |  |  |  |
|  | 195/4 | 6.017 | 6.159 | 5.661 | 6.067 | 5.976 |  |  |  |
| 14 | 221/1 | 6.216 | 5.996 | 6.157 | 5.802 | 6.043 | 6.057 | 0.06 | 0.9 |
|  | 221/2 | 6.052 | 5.880 | 6.009 | 6.058 | 6.000 |  |  |  |
|  | 221/3 | 6.157 | 5.923 | 6.030 | 6.090 | 6.050 |  |  |  |
|  | 221/4 | 6.015 | 6.162 | 6.115 | 6.252 | 6.136 |  |  |  |
| 15 | 229/1 | 5.969 | 6.000 | 5.769 | 5.780 | 5.879 | 5.934 | 0.04 | 0.7 |
|  | 229/2 | 5.889 | 5.882 | 6.218 | 5.728 | 5.929 |  |  |  |
|  | 229/3 | 5.777 | 6.170 | 6.183 | 5.669 | 5.950 |  |  |  |
|  | 229/4 | 5.980 | 6.049 | 5.913 | 5.966 | 5.977 |  |  |  |
| 16 | 253/1 | 6.065 | 5.941 | 6.051 | 5.956 | 6.003 | 5.974 | 0.08 | 1.3 |
|  | 253/2 | 5.981 | 5.866 | 5.789 | 5.804 | 5.860 |  |  |  |
|  | 253/3 | 5.907 | 6.096 | 6.000 | 6.060 | 6.016 |  |  |  |
|  | 253/4 | 6.057 | 6.239 | 5.872 | 5.903 | 6.018 |  |  |  |
| 17 | 264/1 | 5.779 | 6.143 | 5.771 | 5.678 | 5.842 | 6.040 | 0.14 | 2.3 |
|  | 264/2 | 6.051 | 5.943 | 6.310 | 5.908 | 6.053 |  |  |  |
|  | 264/3 | 6.419 | 5.731 | 6.041 | 6.235 | 6.106 |  |  |  |
|  | 264/4 | 6.528 | 5.983 | 6.032 | 6.094 | 6.159 |  |  |  |
| 18 | 279/1 | 6.178 | 5.978 | 5.760 | 5.800 | 5.929 | 5.951 | 0.02 | 0.4 |
|  | 279/2 | 5.797 | 5.882 | 6.020 | 6.032 | 5.932 |  |  |  |
|  | 279/3 | 5.971 | 6.255 | 5.849 | 5.821 | 5.974 |  |  |  |
|  | 279/4 | 6.092 | 5.986 | 5.726 | 6.073 | 5.969 |  |  |  |


| Serial number | Sample number | $\begin{gathered} 1 \text { line } \\ (02.06 .01) \\ \hline \hline \end{gathered}$ | $\begin{gathered} 1 \text { line } \\ (06.06 .01) \\ \hline \hline \end{gathered}$ | $\begin{gathered} 1 \text { line } \\ (12.06 .01) \\ \hline \hline \end{gathered}$ | $\begin{gathered} 1 \text { line } \\ (30.05 .01) \\ \hline \hline \end{gathered}$ | mean | $\qquad$ | SD of sub-samples $1-4$ | $\begin{aligned} & \mathrm{RSD}_{\mathrm{w}} \\ & \text { (rel. \%) } \\ & \hline \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 19 | 294/1 | 5.992 | 5.878 | 5.966 | 5.457 | 5.823 | 5.965 | 0.13 | 2.1 |
|  | 294/2 | 5.810 | 5.979 | 6.285 | 6.339 | 6.103 |  |  |  |
|  | 294/3 | 6.148 | 6.111 | 6.026 | 5.835 | 6.030 |  |  |  |
|  | 294/4 | 6.079 | 5.796 | 6.122 | 5.614 | 5.903 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| 20 | 307/1 | 6.064 | 5.868 | 6.197 | 5.983 | 6.028 | 6.043 | 0.10 | 1.7 |
|  | 307/2 | 5.983 | 5.820 | 5.834 | 6.074 | 5.928 |  |  |  |
|  | 307/3 | 5.980 | 6.348 | 6.126 | 6.260 | 6.178 |  |  |  |
|  | 307/4 | 5.735 | 6.135 | 6.235 | 6.045 | 6.038 |  |  |  |

$\mathrm{M}_{\mathrm{ss}}$ - mean of
$\mathrm{M}_{\text {Ss }}$ - mean of

| sub-samples 1-4 | 6.023 |
| :--- | :--- |
| SD of means of |  |
| the sub-samples |  |


| $1-4$ | 0.049 |
| :--- | :---: |
| RSD (rel.\%) | 0.8 |

## Analyt Mg

## HS = Homogeneous sample

| Serial <br> number | Sample <br> number | 1 line <br> $(02.06 .01)$ | 1 line <br> $(06.06 .01)$ | 1 line <br> $(12.06 .01)$ | 1 line <br> $(30.05 .01)$ | mean |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| 1 | HS 1 | 5.886 | 5.807 | 5.931 | 5.785 | 5.852 |
| 2 | HS 2 | 5.896 | 5.714 | 5.442 | 6.451 | $\mathbf{5 . 8 7 6}$ |
| 3 | HS 3 | 5.611 | 5.832 | 6.297 | 5.943 | $\mathbf{5 . 9 2 1}$ |
| 4 | HS 4 | 6.240 | 5.837 | 6.655 | 6.011 | $\mathbf{6 . 1 8 6}$ |
| 5 | HS 5 | 5.863 | 5.948 | 5.559 | 6.169 | $\mathbf{5 . 8 8 5}$ |
| 6 | HS 6 | 5.705 | 5.953 | 5.829 | 5.946 | $\mathbf{5 . 8 5 8}$ |
| 7 | HS 7 | 5.769 | 5.633 | 5.853 | 6.503 | $\mathbf{5 . 9 4 0}$ |
| 8 | HS 8 | 5.947 | 5.978 | 6.068 | 6.947 | $\mathbf{6 . 2 3 5}$ |
| 9 | HS 9 | 6.272 | 6.044 | 6.011 | 5.990 | $\mathbf{6 . 0 7 9}$ |
| 10 | HS 10 | 5.849 | 5.750 | 5.921 | 6.062 | $\mathbf{5 . 8 9 5}$ |
| 11 | HS 11 | 5.868 | 5.851 | 5.990 | 6.089 | $\mathbf{5 . 9 5 0}$ |
| 12 | HS 12 | 6.226 | 5.859 | 5.571 | 5.793 | $\mathbf{5 . 8 6 2}$ |
| 13 | HS 13 | 5.918 | 6.147 | 5.913 | 5.315 | $\mathbf{5 . 8 2 3}$ |
| 14 | HS 14 | 6.289 | 6.185 | 6.153 | 5.834 | $\mathbf{6 . 1 1 5}$ |
| 15 | HS 15 | 6.073 | 6.170 | 5.847 | 5.742 | $\mathbf{5 . 9 5 8}$ |
| 16 | HS 16 | 6.143 | 5.811 | 5.695 | 6.170 | $\mathbf{5 . 9 5 5}$ |

HS = Homogeneous sample


| Homogeneity between the samples |  |  |
| :--- | :--- | :--- |
| Analysis of variance: $\mathrm{a}=0.05$ | $\mathrm{M}_{\mathrm{Ss}}$ | RSD \% |
| standard deviation <br> within the samples <br> $\mathrm{s}_{\mathrm{w}}$ | 0.108 | 0.023 |


| Homogeneity within the samples |  |  |  |
| :---: | :---: | :---: | :---: |
| Analysis of variance: $\mathrm{a}=0.05$ |  |  |  |
| standard deviation of homogeneous sample $\mathrm{S}_{\mathrm{HS}}$ | 0.117 | $\begin{gathered} \mathrm{M}_{\mathrm{HS}} \\ 5.952 \end{gathered}$ | $\begin{gathered} \hline \mathrm{RSD}_{\text {HS }} \% \\ 2.0 \end{gathered}$ |
|  |  | $F_{\text {value }}$ | 1.98 |
| test value $\mathrm{s}_{\mathrm{w}}^{2} / \mathrm{s}_{\mathrm{HS}}{ }^{2}$ | 0.862 | Characteristic no. for homogeneity within the samples | 0.435 |
| Homogeneity within the samples: No significant inhomogeneity |  |  |  |

ETV ICP OES-results (means of 3 spectral lines) measured on 4 different days.
Measurements, compilation of results: ESK, Ceramics GmbH \& Co.KG, Kempten; Germany
Final evaluation: BAM, Federal Institute for Materials and Testing (Division I.1)

## Analyt Ni

mass fraction in $\mathrm{mg} / \mathrm{kg}$

| Serial number | Sample number | mean calculated from 3 lines (02.06.01) | mean calculated from 3 lines (06.06.01) | mean calculated from 3 lines (12.06.01) | mean calculated from 3 lines $(30.05 .01)$ | mean | $\qquad$ | SD of sub-samples $1-4$ | RSD ${ }_{\text {w }}$ (rel.\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2/1 | 39.820 | 41.526 | 40.575 | 41.553 | 40.87 | 39.86 | 0.7 | 1.9 |
|  | 2/2 | 40.755 | 39.258 | 38.669 | 40.993 | 39.92 |  |  |  |
|  | 2/3 | 38.319 | 38.925 | 40.255 | 40.654 | 39.54 |  |  |  |
|  | 2/4 | 40.183 | 39.036 | 38.197 | 39.029 | 39.11 |  |  |  |
| 2 | 29/1 | 40.087 | 40.756 | 38.845 | 38.918 | 39.65 | 39.62 | 1.1 | 2.8 |
|  | 29/2 | 43.110 | 39.617 | 42.026 | 39.015 | 40.94 |  |  |  |
|  | 29/3 | 39.294 | 40.608 | 36.530 | 36.434 | 38.22 |  |  |  |
|  | 29/4 | 40.027 | 40.824 | 40.299 | 37.509 | 39.66 |  |  |  |
| 3 | 35/1 | 39.969 | 41.992 | 41.355 | 40.277 | 40.90 | 40.31 | 0.8 | 2.0 |
|  | 35/2 | 38.581 | 40.319 | 39.532 | 39.356 | 39.45 |  |  |  |
|  | 35/3 | 42.553 | 38.855 | 37.883 | 40.092 | 39.85 |  |  |  |
|  | 35/4 | 41.946 | 40.208 | 40.989 | 41.074 | 41.05 |  |  |  |
| 4 | 56/1 | 38.686 | 39.224 | 40.838 | 37.668 | 39.10 | 40.42 | 1.0 | 2.4 |
|  | 56/2 | 41.325 | 40.524 | 40.896 | 40.563 | 40.83 |  |  |  |
|  | 56/3 | 40.699 | 41.134 | 40.675 | 43.106 | 41.40 |  |  |  |
|  | 56/4 | 40.542 | 40.093 | 40.416 | 40.284 | 40.33 |  |  |  |
| 5 | 76/1 | 38.452 | 40.216 | 38.863 | 40.457 | 39.50 | 39.87 | 0.8 | 2.0 |
|  | 76/2 | 39.023 | 40.198 | 40.385 | 40.970 | 40.14 |  |  |  |
|  | 76/3 | 39.009 | 41.367 | 37.258 | 38.323 | 38.99 |  |  |  |
|  | 76/4 | 38.932 | 40.165 | 42.823 | 41.444 | 40.84 |  |  |  |
| 6 | 90/1 | 39.079 | 41.039 | 40.310 | 39.205 | 39.91 | 40.96 | 0.8 | 1.9 |
|  | 90/2 | 41.801 | 40.204 | 39.707 | 42.468 | 41.05 |  |  |  |
|  | 90/3 | 40.541 | 41.552 | 43.203 | 41.911 | 41.80 |  |  |  |
|  | 90/4 | 40.384 | 43.688 | 41.260 | 38.982 | 41.08 |  |  |  |
| 7 | 108/1 | 40.481 | 39.261 | 41.993 | 39.936 | 40.42 | 40.30 | 0.4 | 1.0 |
|  | 108/2 | 37.659 | 39.220 | 40.498 | 41.898 | 39.82 |  |  |  |
|  | 108/3 | 40.983 | 40.409 | 39.501 | 39.888 | 40.20 |  |  |  |
|  | 108/4 | 41.321 | 41.768 | 41.620 | 38.439 | 40.79 |  |  |  |
| 8 | 128/1 | 40.701 | 39.384 | 38.643 | 41.563 | 40.07 | 40.31 | 0.4 | 0.9 |
|  | 128/2 | 40.756 | 39.837 | 41.135 | 38.419 | 40.04 |  |  |  |
|  | 128/3 | 40.254 | 41.162 | 40.209 | 39.539 | 40.29 |  |  |  |
|  | 128/4 | 40.987 | 39.739 | 42.039 | 40.526 | 40.82 |  |  |  |


| Analyt Ni |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Serial number | Sample number | mean calculated from 3 lines (02.06.01) | mean calculated from 3 lines (06.06.01) | mean calculated from 3 lines (12.06.01) | mean calculated from 3 lines (30.05.01) | mean | mean of sub-samples 1-4 | $\begin{gathered} \text { SD of } \\ \text { sub-samples } \\ 1-4 \\ \hline \hline \end{gathered}$ | $\mathrm{RSD}_{\mathrm{w}}$ (rel.\%) |
| 9 | 132/1 | 43.099 | 40.671 | 37.817 | 39.583 | 40.29 | 39.41 | 0.8 | 2.0 |
|  | 132/2 | 38.893 | 42.296 | 38.030 | 39.641 | 39.71 |  |  |  |
|  | 132/3 | 41.752 | 40.074 | 39.660 | 35.182 | 39.17 |  |  |  |
|  | 132/4 | 38.100 | 39.450 | 39.633 | 36.686 | 38.47 |  |  |  |
| 10 | 156/1 | 39.002 | 40.717 | 39.389 | 39.467 | 39.64 | 39.85 | 0.2 | 0.5 |
|  | 156/2 | 36.670 | 40.889 | 39.962 | 42.765 | 40.07 |  |  |  |
|  | 156/3 | 40.311 | 41.072 | 39.922 | 38.607 | 39.98 |  |  |  |
|  | 156/4 | 39.453 | 39.991 | 40.501 | 38.901 | 39.71 |  |  |  |
| 11 | 164/1 | 39.951 | 39.078 | 41.713 | 41.475 | 40.55 | 40.04 | 0.5 | 1.3 |
|  | 164/2 | 38.053 | 39.330 | 38.628 | 41.432 | 39.36 |  |  |  |
|  | 164/3 | 42.108 | 40.361 | 37.612 | 40.794 | 40.22 |  |  |  |
|  | 164/4 | 39.917 | 39.716 | 41.797 | 38.602 | 40.01 |  |  |  |
| 12 | 188/1 | 37.404 | 39.616 | 40.158 | 40.527 | 39.43 | 39.52 | 0.5 | 1.3 |
|  | 188/2 | 39.203 | 39.436 | 40.443 | 39.860 | 39.74 |  |  |  |
|  | 188/3 | 37.730 | 38.916 | 38.067 | 40.709 | 38.86 |  |  |  |
|  | 188/4 | 41.347 | 39.410 | 39.343 | 40.203 | 40.08 |  |  |  |
| 13 | 195/1 | 39.589 | 41.775 | 41.942 | 40.838 | 41.04 | 39.78 | 0.9 | 2.2 |
|  | 195/2 | 38.790 | 40.126 | 39.393 | 37.971 | 39.07 |  |  |  |
|  | 195/3 | 40.291 | 39.684 | 39.380 | 39.385 | 39.68 |  |  |  |
|  | 195/4 | 38.624 | 39.397 | 37.033 | 42.250 | 39.33 |  |  |  |
| 14 | 221/1 | 40.346 | 37.740 | 40.426 | 37.589 | 39.02 | 39.27 | 0.3 | 0.8 |
|  | 221/2 | 37.699 | 39.443 | 38.127 | 40.690 | 38.99 |  |  |  |
|  | 221/3 | 40.583 | 39.569 | 40.630 | 37.884 | 39.67 |  |  |  |
|  | 221/4 | 40.059 | 39.036 | 39.558 | 38.920 | 39.39 |  |  |  |
| 15 | 229/1 | 40.227 | 39.285 | 39.054 | 39.756 | 39.58 | 39.59 | 0.7 | 1.8 |
|  | 229/2 | 40.298 | 39.530 | 41.395 | 40.720 | 40.49 |  |  |  |
|  | 229/3 | 39.387 | 37.240 | 39.862 | 38.487 | 38.74 |  |  |  |
|  | 229/4 | 39.368 | 38.443 | 38.253 | 42.115 | 39.54 |  |  |  |
| 16 | 253/1 | 40.132 | 40.474 | 41.812 | 39.520 | 40.48 | 40.23 | 1.0 | 2.5 |
|  | 253/2 | 38.172 | 40.692 | 37.323 | 39.876 | 39.02 |  |  |  |
|  | 253/3 | 42.838 | 39.299 | 43.732 | 39.893 | 41.44 |  |  |  |
|  | 253/4 | 41.809 | 40.383 | 37.176 | 40.612 | 39.99 |  |  |  |
| 17 | 264/1 | 39.183 | 40.443 | 39.999 | 40.100 | 39.93 | 39.60 | 0.4 | 1.1 |
|  | 264/2 | 38.719 | 39.919 | 39.759 | 38.275 | 39.17 |  |  |  |
|  | 264/3 | 39.850 | 39.734 | 39.773 | 40.572 | 39.98 |  |  |  |
|  | 264/4 | 39.833 | 39.607 | 38.634 | 39.120 | 39.30 |  |  |  |
| 18 | 279/1 | 41.822 | 42.154 | 37.576 | 37.843 | 39.85 | 40.08 | 0.6 | 1.6 |
|  | 279/2 | 38.857 | 40.364 | 41.456 | 41.393 | 40.52 |  |  |  |
|  | 279/3 | 40.204 | 38.223 | 38.029 | 40.715 | 39.29 |  |  |  |
|  | 279/4 | 40.679 | 42.277 | 38.913 | 40.761 | 40.66 |  |  |  |

Analyt Ni

| Serial <br> number | Sample <br> number | mean <br> calculated <br> from 3 lines <br> $(02.06 .01)$ | mean <br> calculated <br> from 3 lines <br> $(06.06 .01)$ | mean <br> calculated <br> from 3 lines <br> $(12.06 .01)$ | mean <br> calculated <br> from 3 lines <br> $(30.05 .01)$ | mean | mean of <br> sub-samples <br> 1-4 | SD of <br> sub-samples <br> 1-4 | RSD (rel.\%) |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

## Analyt Ni

HS = Homogeneous sample

| Serial <br> number | Sample <br> number | mean <br> calculated <br> from 3 lines <br> $(02.06 .01)$ | mean <br> calculated <br> from 3 lines <br> $(06.06 .01)$ | mean <br> calculated <br> from 3 lines <br> $(12.06 .01)$ | mean <br> calculated <br> from 3 lines <br> $(30.05 .01)$ | mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
| 1 | HS 1 | 40.061 | 38.368 | 43.647 | 38.836 | $\mathbf{4 0 . 2 3}$ |
| 2 | HS 2 | 38.255 | 40.176 | 39.335 | 39.646 | $\mathbf{3 9 . 3 5}$ |
| 3 | HS 3 | 38.961 | 38.419 | 41.885 | 39.441 | $\mathbf{3 9 . 6 8}$ |
| 4 | HS 4 | 39.705 | 37.218 | 40.814 | 40.275 | $\mathbf{3 9 . 5 0}$ |
| 5 | HS 5 | 40.483 | 37.846 | 38.795 | 41.742 | $\mathbf{3 9 . 7 2}$ |
| 6 | HS 6 | 38.652 | 40.065 | 42.258 | 38.722 | $\mathbf{3 9 . 9 2}$ |
| 7 | HS 7 | 41.758 | 37.915 | 43.086 | 40.729 | $\mathbf{4 0 . 8 7}$ |
| 8 | HS 8 | 39.062 | 40.028 | 40.705 | 40.811 | $\mathbf{4 0 . 1 5}$ |
| 9 | HS 9 | 38.641 | 41.163 | 39.125 | 40.947 | $\mathbf{3 9 . 9 7}$ |
| 10 | HS 10 | 39.405 | 39.350 | 41.794 | 39.876 | $\mathbf{4 0 . 1 1}$ |
| 11 | HS 11 | 39.236 | 41.106 | 38.622 | 41.933 | $\mathbf{4 0 . 2 2}$ |
| 12 | HS 12 | 37.299 | 39.694 | 38.183 | 43.069 | $\mathbf{3 9 . 5 6}$ |
| 13 | HS 13 | 40.585 | 42.837 | 41.221 | 37.896 | $\mathbf{4 0 . 6 3}$ |
| 14 | HS 14 | 40.029 | 40.149 | 40.947 | 39.586 | $\mathbf{4 0 . 1 8}$ |
| 15 | HS 15 | 41.167 | 41.486 | 38.212 | 40.679 | $\mathbf{4 0 . 3 9}$ |

HS = Homogeneous sample

| 16 | HS 16 | 38.152 | 41.376 | 39.403 | 38.909 | $\mathbf{3 9 . 4 6}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 17 | HS 17 | 39.432 | 42.564 | 40.892 | 39.768 | $\mathbf{4 0 . 6 6}$ |
| 18 | HS 18 | 38.145 | 38.871 | 39.529 | 40.145 | $\mathbf{3 9 . 1 7}$ |
| 19 | HS 19 | 40.209 | 41.008 | 41.435 | 38.806 | $\mathbf{4 0 . 3 6}$ |
| 20 | HS 20 | 41.760 | 41.248 | 40.558 | 40.420 | $\mathbf{4 1 . 0 0}$ |
| M |  |  |  |  |  |  |
| Momogeneous <br> homen <br> sample |  |  |  |  |  | $\mathbf{4 0 . 0 6}$ |


| Homogeneity between the samples |  |  |  |
| :---: | :---: | :---: | :---: |
| Analysis of variance: $\mathrm{a}=0.05$ |  |  |  |
| standard deviation within the samples $\mathrm{S}_{\mathrm{w}}$ | $0.70$ | $\begin{gathered} M_{\mathrm{Ss}} \\ 39.96 \end{gathered}$ | $\begin{gathered} \text { RSD \% } \\ 1.0 \end{gathered}$ |
| standard deviation between the samples $\mathrm{S}_{\mathrm{b}}$ | 0.81 | Fvalue | 1.768 |
| test value $\mathrm{s}_{\mathrm{b}}{ }^{2} / \mathrm{s}_{\mathrm{w}}{ }^{2}$ | 1.36 | Characteristic no. for homogeneity between the samples | 0.77 |
| Homogeneity between the samples: No significant inhomogeneity |  |  |  |


| Homogeneity within the samples |  |  |  |
| :---: | :---: | :---: | :---: |
| Analysis of variance: $\quad \mathrm{a}=0.05$ |  |  |  |
| standard deviation of homogeneous sample $\mathrm{SHS}_{\mathrm{H}}$ | 0.51 | $\begin{gathered} M_{\mathrm{HS}} \\ 40.06 \end{gathered}$ | $\begin{gathered} \text { RSD }_{\text {HS }} \% \\ 1.3 \end{gathered}$ |
|  |  | $\mathrm{F}_{\text {value }}$ | 1.98 |
| test value $\mathrm{s}_{\mathrm{w}}^{2} / \mathrm{sHS}^{2}$ | 1.83 | Characteristic no. for homogeneity within the samples | 0.93 |
| Homogeneity within the samples: No significant inhomogeneity |  |  |  |

ETV ICP OES-results (means of 3 spectral lines) measured on 4 different days
Measurements, compilation of results: ESK, Ceramics GmbH \& Co.KG, Kempten; Germany
Final evaluation: BAM, Federal Institute for Materials and Testing (Division I.1)

## Analyt Ti

mass fraction in $\mathrm{mg} / \mathrm{kg}$

| Serial number | Sample number | mean calculated from 3 lines (02.06.01) | mean calculated from 3 lines (06.06.01) | mean calculated from 3 lines (12.06.01) | mean calculated from 3 lines (30.05.01) | mean | $\begin{gathered} \text { mean of } \\ \text { sub-samples } \\ 1-4 \\ \hline \end{gathered}$ | $\begin{gathered} \text { SD of } \\ \text { sub-samples } \\ 1-4 \\ \hline \end{gathered}$ | RSD ${ }_{\text {w }}$ (rel.\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2/1 | 81.220 | 89.075 | 86.976 | 80.517 | 84.45 | 81.55 | 2.9 | 3.5 |
|  | 2/2 | 83.663 | 82.245 | 78.011 | 78.871 | 80.70 |  |  |  |
|  | 2/3 | 78.164 | 85.894 | 83.925 | 84.679 | 83.17 |  |  |  |
|  | 2/4 | 81.937 | 79.912 | 77.663 | 72.088 | 77.90 |  |  |  |
| 2 | 29/1 | 77.575 | 81.307 | 82.141 | 78.454 | 79.87 | 79.33 | 0.5 | 0.7 |
|  | 29/2 | 76.746 | 80.036 | 79.429 | 81.031 | 79.31 |  |  |  |
|  | 29/3 | 81.254 | 80.807 | 78.520 | 77.413 | 79.50 |  |  |  |
|  | 29/4 | 79.192 | 81.728 | 77.043 | 76.528 | 78.62 |  |  |  |
| 3 | 35/1 | 79.806 | 79.227 | 78.824 | 82.434 | 80.07 | 80.08 | 1.4 | 1.7 |
|  | 35/2 | 81.941 | 78.916 | 79.516 | 84.859 | 81.31 |  |  |  |
|  | 35/3 | 80.880 | 84.479 | 79.117 | 78.502 | 80.74 |  |  |  |
|  | 35/4 | 76.598 | 76.559 | 81.728 | 77.871 | 78.19 |  |  |  |
| 4 | 56/1 | 83.442 | 79.621 | 79.737 | 81.407 | 81.05 | 80.49 | 0.6 | 0.7 |
|  | 56/2 | 77.405 | 80.365 | 82.060 | 80.815 | 80.16 |  |  |  |
|  | 56/3 | 80.909 | 81.850 | 79.740 | 80.888 | 80.85 |  |  |  |
|  | 56/4 | 79.120 | 79.795 | 80.637 | 79.971 | 79.88 |  |  |  |
| 5 | 76/1 | 81.262 | 79.310 | 79.432 | 81.268 | 80.32 | 80.74 | 1.5 | 1.9 |
|  | 76/2 | 81.997 | 81.880 | 82.144 | 85.315 | 82.83 |  |  |  |
|  | 76/3 | 78.939 | 82.184 | 77.560 | 78.291 | 79.24 |  |  |  |
|  | 76/4 | 80.523 | 79.976 | 81.492 | 80.257 | 80.56 |  |  |  |
| 6 | 90/1 | 78.022 | 80.025 | 79.006 | 82.990 | 80.01 | 80.25 | 0.7 | 0.9 |
|  | 90/2 | 81.023 | 79.209 | 77.971 | 82.001 | 80.05 |  |  |  |
|  | 90/3 | 79.161 | 77.566 | 82.367 | 79.526 | 79.65 |  |  |  |
|  | 90/4 | 81.625 | 82.553 | 81.700 | 79.200 | 81.27 |  |  |  |
| 7 | 108/1 | 77.460 | 79.685 | 79.854 | 83.891 | 80.22 | 79.51 | 1.2 | 1.4 |
|  | 108/2 | 81.079 | 79.105 | 79.059 | 80.333 | 79.89 |  |  |  |
|  | 108/3 | 79.172 | 79.073 | 76.963 | 75.991 | 77.80 |  |  |  |
|  | 108/4 | 79.733 | 77.404 | 79.044 | 84.388 | 80.14 |  |  |  |
| 8 | 128/1 | 81.740 | 78.888 | 72.110 | 80.448 | 78.30 | 79.64 | 1.6 | 2.0 |
|  | 128/2 | 80.250 | 84.745 | 79.052 | 82.292 | 81.58 |  |  |  |
|  | 128/3 | 78.344 | 78.056 | 75.937 | 81.558 | 78.47 |  |  |  |
|  | 128/4 | 80.296 | 80.042 | 81.152 | 79.355 | 80.21 |  |  |  |

Analyt Ti

| Serial number | Sample number | mean calculated from 3 lines (02.06.01) | mean calculated from 3 lines (06.06.01) | mean calculated from 3 lines (12.06.01) | mean calculated from 3 lines (30.05.01) | mean | mean of sub-samples 1-4 | $\begin{gathered} \text { SD of } \\ \text { sub-samples } \\ 1-4 \\ \hline \hline \end{gathered}$ | RSD ${ }_{\text {w }}$ (rel.\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | 108/1 | 77.460 | 79.685 | 79.854 | 83.891 | 80.22 | 79.51 | 1.2 | 1.4 |
|  | 108/2 | 81.079 | 79.105 | 79.059 | 80.333 | 79.89 |  |  |  |
|  | 108/3 | 79.172 | 79.073 | 76.963 | 75.991 | 77.80 |  |  |  |
|  | 108/4 | 79.733 | 77.404 | 79.044 | 84.388 | 80.14 |  |  |  |
| 8 | 128/1 | 81.740 | 78.888 | 72.110 | 80.448 | 78.30 | 79.64 | 1.6 | 2.0 |
|  | 128/2 | 80.250 | 84.745 | 79.052 | 82.292 | 81.58 |  |  |  |
|  | 128/3 | 78.344 | 78.056 | 75.937 | 81.558 | 78.47 |  |  |  |
|  | 128/4 | 80.296 | 80.042 | 81.152 | 79.355 | 80.21 |  |  |  |
| 9 | 132/1 | 85.360 | 82.864 | 75.833 | 80.519 | 81.14 | 79.78 | 2.2 | 2.7 |
|  | 132/2 | 80.452 | 83.945 | 79.060 | 79.711 | 80.79 |  |  |  |
|  | 132/3 | 81.598 | 81.745 | 81.295 | 77.984 | 80.66 |  |  |  |
|  | 132/4 | 75.459 | 76.553 | 78.877 | 75.170 | 76.51 |  |  |  |
| 10 | 156/1 | 81.986 | 78.404 | 80.005 | 79.935 | 80.08 | 79.51 | 1.2 | 1.5 |
|  | 156/2 | 79.604 | 80.539 | 79.191 | 79.716 | 79.76 |  |  |  |
|  | 156/3 | 80.305 | 78.664 | 82.153 | 80.545 | 80.42 |  |  |  |
|  | 156/4 | 78.374 | 76.024 | 78.478 | 78.165 | 77.76 |  |  |  |
| 11 | 164/1 | 81.032 | 80.555 | 81.984 | 81.765 | 81.33 | 80.14 | 1.8 | 2.2 |
|  | 164/2 | 80.238 | 82.009 | 81.606 | 84.016 | 81.97 |  |  |  |
|  | 164/3 | 79.099 | 78.913 | 79.216 | 78.825 | 79.01 |  |  |  |
|  | 164/4 | 78.302 | 77.640 | 78.561 | 78.463 | 78.24 |  |  |  |
| 12 | 188/1 | 80.117 | 77.914 | 81.175 | 81.044 | 80.06 | 80.13 | 1.0 | 1.3 |
|  | 188/2 | 81.604 | 81.157 | 80.885 | 82.620 | 81.57 |  |  |  |
|  | 188/3 | 78.811 | 79.590 | 79.239 | 81.605 | 79.81 |  |  |  |
|  | 188/4 | 77.668 | 80.526 | 79.858 | 78.324 | 79.09 |  |  |  |
| 13 | 195/1 | 80.770 | 81.181 | 81.864 | 81.639 | 81.36 | 80.77 | 1.1 | 1.3 |
|  | 195/2 | 81.937 | 83.636 | 79.517 | 78.951 | 81.01 |  |  |  |
|  | 195/3 | 78.760 | 80.596 | 79.274 | 78.132 | 79.19 |  |  |  |
|  | 195/4 | 83.851 | 79.387 | 82.698 | 80.083 | 81.50 |  |  |  |
| 14 | 221/1 | 78.810 | 78.622 | 77.824 | 80.194 | 78.86 | 79.92 | 0.7 | 0.9 |
|  | 221/2 | 81.467 | 80.410 | 77.741 | 81.838 | 80.36 |  |  |  |
|  | 221/3 | 79.919 | 82.007 | 79.454 | 79.699 | 80.27 |  |  |  |
|  | 221/4 | 82.478 | 80.347 | 79.616 | 78.219 | 80.16 |  |  |  |
| 15 | 229/1 | 79.627 | 78.174 | 76.746 | 81.249 | 78.95 | 78.84 | 0.8 | 1.0 |
|  | 229/2 | 78.968 | 77.866 | 80.062 | 78.192 | 78.77 |  |  |  |
|  | 229/3 | 79.541 | 79.525 | 78.202 | 81.853 | 79.78 |  |  |  |
|  | 229/4 | 75.505 | 77.733 | 79.275 | 78.919 | 77.86 |  |  |  |
| 16 | 253/1 | 81.601 | 76.148 | 79.924 | 79.886 | 79.39 | 79.21 | 0.8 | 1.0 |
|  | 253/2 | 79.855 | 79.131 | 78.714 | 75.402 | 78.28 |  |  |  |
|  | 253/3 | 78.347 | 81.875 | 81.792 | 78.794 | 80.20 |  |  |  |
|  | 253/4 | 79.532 | 79.565 | 79.469 | 77.278 | 78.96 |  |  |  |

Analyt Ti

| Serial number | Sample number | mean calculated from 3 lines (02.06.01) | mean calculated from 3 lines (06.06.01) | mean calculated from 3 lines (12.06.01) | mean calculated from 3 lines $(30.05 .01)$ | mean | mean of sub-samples 1-4 | $\begin{gathered} \text { SD of } \\ \text { sub-samples } \\ 1-4 \\ \hline \hline \end{gathered}$ | $\mathrm{RSD}_{\mathrm{w}}$ (rel.\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 17 | 264/1 | 80.565 | 85.936 | 85.402 | 79.443 | 82.84 | 80.07 | 2.2 | 2.8 |
|  | 264/2 | 79.262 | 79.452 | 77.169 | 75.596 | 77.87 |  |  |  |
|  | 264/3 | 78.582 | 80.896 | 83.102 | 81.023 | 80.90 |  |  |  |
|  | 264/4 | 81.318 | 76.486 | 79.542 | 77.276 | 78.66 |  |  |  |
| 18 | 279/1 | 80.714 | 83.170 | 81.251 | 80.576 | 81.43 | 79.82 | 1.1 | 1.4 |
|  | 279/2 | 78.602 | 79.419 | 81.377 | 79.133 | 79.63 |  |  |  |
|  | 279/3 | 81.153 | 76.600 | 79.765 | 78.688 | 79.05 |  |  |  |
|  | 279/4 | 80.441 | 78.835 | 80.136 | 77.285 | 79.17 |  |  |  |
| 19 | 294/1 | 81.811 | 81.003 | 77.814 | 78.886 | 79.88 | 79.20 | 1.4 | 1.7 |
|  | 294/2 | 79.818 | 80.186 | 81.985 | 79.216 | 80.30 |  |  |  |
|  | 294/3 | 80.289 | 74.808 | 79.019 | 83.582 | 79.42 |  |  |  |
|  | 294/4 | 78.198 | 75.970 | 77.398 | 77.231 | 77.20 |  |  |  |
| 20 | 307/1 | 81.041 | 80.165 | 82.617 | 84.716 | 82.13 | 80.01 | 1.6 | 2.0 |
|  | 307/2 | 79.523 | 78.873 | 80.148 | 78.579 | 79.28 |  |  |  |
|  | 307/3 | 81.407 | 78.039 | 81.318 | 79.758 | 80.13 |  |  |  |
|  | 307/4 | 77.149 | 79.633 | 78.485 | 78.773 | 78.51 |  |  |  |
|  |  |  |  |  |  | $\mathrm{M}_{\mathrm{ss}}$ - mean of means of the sub-samples 1-4 | 79.93 |  |  |
|  |  |  |  |  |  | SD of means of the subsamples 1-4 | 0.63 |  |  |
|  |  |  |  |  |  | RSD (rel.\%) | 0.8 |  | $\begin{aligned} & \text { mean } \\ & \text { RSD }_{w} \text { (\%) } \end{aligned}$ |

Analyt Ti
HS = Homogeneous sample

| Serial <br> number | Sample <br> number | mean <br> calculated <br> from 3 lines <br> $(02.06 .01)$ | mean <br> calculated <br> from 3 lines <br> $(06.06 .01)$ | mean <br> calculated <br> from 3 lines <br> $(12.06 .01)$ | mean calculated <br> from 3 lines <br> $(30.05 .01)$ | mean |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  |  |
| 1 | HS 1 | 79.885 | 81.093 | 81.993 | 81.393 | $\mathbf{8 1 . 0 9}$ |
| 2 | HS 2 | 79.355 | 82.059 | 83.681 | 81.096 | $\mathbf{8 1 . 5 5}$ |
| 3 | HS 3 | 78.225 | 81.145 | 79.789 | 80.682 | $\mathbf{7 9 . 9 6}$ |
| 4 | HS 4 | 81.980 | 76.865 | 81.141 | 82.079 | $\mathbf{8 0 . 5 2}$ |
| 5 | HS 5 | 79.249 | 84.156 | 78.206 | 82.832 | $\mathbf{8 1 . 1 1}$ |
| 6 | HS 6 | 79.573 | 81.390 | 80.058 | 81.159 | $\mathbf{8 0 . 5 5}$ |
| 7 | HS 7 | 79.829 | 76.461 | 81.254 | 80.853 | $\mathbf{7 9 . 6 0}$ |
| 8 | HS 8 | 78.432 | 79.152 | 79.173 | 84.908 | $\mathbf{8 0 . 4 2}$ |
| 9 | HS 9 | 79.989 | 84.838 | 80.768 | 80.904 | $\mathbf{8 1 . 6 2}$ |


| 10 | HS 10 | 80.816 | 77.919 | 79.222 | 78.388 | 79.09 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | HS 11 | 77.091 | 80.181 | 80.085 | 80.915 | 79.57 |
| 12 | HS 12 | 78.946 | 79.023 | 79.632 | 78.218 | 78.95 |
| 13 | HS 13 | 83.624 | 76.839 | 83.408 | 80.070 | 80.99 |
| 14 | HS 14 | 80.583 | 82.091 | 80.510 | 79.777 | 80.74 |
| 15 | HS 15 | 79.072 | 80.684 | 80.213 | 77.392 | 79.34 |
| 16 | HS 16 | 78.994 | 77.109 | 82.310 | 81.068 | 79.87 |
| 17 | HS 17 | 79.088 | 77.980 | 80.837 | 77.003 | 78.73 |
| 18 | HS 18 | 77.142 | 80.318 | 80.554 | 77.800 | 78.95 |
| 19 | HS 19 | 78.727 | 81.884 | 82.189 | 80.160 | 80.74 |
| 20 | HS 20 | 77.056 | 80.298 | 78.579 | 76.844 | 78.19 |
|  |  |  |  | $\mathbf{M}_{\text {HS }}$ - mean of homogeneous sample |  | 80.08 |
|  |  |  |  | $\mathrm{SD}_{\text {HS }}$ |  | 1.00 |
|  |  |  |  | RSD ${ }_{\text {HS }}$ (\%) |  | 1.2 |


| Homogeneity between the samples |  |  |  |
| :---: | :---: | :---: | :---: |
| Analysis of variance: $\mathrm{a}=0.05$ |  |  |  |
| standard deviation within the samples $\mathrm{S}_{\mathrm{w}}$ | $1.44$ | $\begin{gathered} \mathrm{M}_{\mathrm{ss}} \\ 79.93 \end{gathered}$ | $\begin{gathered} \text { RSD \% } \\ 0.8 \end{gathered}$ |
| standard deviation between the samples $\mathrm{s}_{\mathrm{b}}$ | 1.27 | $F_{\text {value }}$ | 1.768 |
| test value $\mathrm{s}_{\mathrm{b}}^{2} / \mathrm{s}_{\mathrm{w}}^{2}$ | 0.77 | Characteristic no. for homogeneity between the samples | 0.44 |
| Homogeneity between the samples: No significant inhomogeneity |  |  |  |


| Homogeneity within the samples |  |  |  |
| :---: | :---: | :---: | :---: |
| Analysis of variance: $\mathrm{a}=0.05$ |  |  |  |
| standard deviation of homogeneous sample $\mathrm{S}_{\mathrm{Hs}}$ | 1.00 | $\begin{gathered} \mathrm{M}_{\mathrm{HS}} \\ 80.08 \end{gathered}$ | $\begin{gathered} \text { RSD }_{\text {HS }} \% \\ 1.2 \end{gathered}$ |
|  |  | $\mathrm{F}_{\text {value }}$ | 1.98 |
| test value $\mathrm{s}_{\mathrm{w}}{ }^{2} / \mathrm{s}_{\mathrm{HS}}{ }^{2}$ | 2.08 | Characteristic no. for homogeneity within the samples | 1.05 |
| Homogeneity within the samples: No significant inhomogeneity |  |  |  |

ETV ICP OES-results (means of 3 spectral lines) measured on 7 different days
Measurements, compilation of results: ESK, Ceramics GmbH \& Co.KG, Kempten; Germany
Final evaluation: BAM, Federal Institute for Materials and Testing (Division I.1)
Analyt V
mass fraction in mg/kg

| Serial number | Sample number | mean calculated from 3 lines (16.02.00) | mean calculated from 3 lines (21.02.00) | mean calculated from 3 lines (23.02.00) | mean calculated from 3 lines (02.06.01) | mean calculated from 3 lines (06.06.01) | mean calculated from 3 lines (12.06.01) | mean calculated from 3 lines $(30.05 .01)$ | mean | mean of sub-samples 1-4 | SD of sub-samples 1-4 | $\begin{gathered} \mathrm{RSD}_{\mathrm{w}} \\ (\mathrm{rel} . \%) \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2/1 | 43.920 | 50.128 | 44.676 | 58.364 | 66.511 | 51.280 | 52.204 | 52.44 | 51.14 | 2.7 | 5.2 |
|  | 2/2 | 52.599 | 52.987 | 48.635 | 57.748 | 56.016 | 46.338 | 64.826 | 54.16 |  |  |  |
|  | 2/3 | 50.272 | 46.536 | 50.834 | 45.364 | 45.185 | 50.975 | 47.932 | 48.16 |  |  |  |
|  | 2/4 | 51.205 | 38.639 | 52.360 | 45.570 | 47.787 | 53.617 | 59.435 | 49.80 |  |  |  |
| 2 | 29/1 | 47.849 | 51.134 | 46.637 | 53.519 | 57.073 | 45.267 | 47.270 | 49.82 | 51.45 | 3.5 | 6.8 |
|  | 29/2 | 54.659 | 52.954 | 48.087 | 64.680 | 52.108 | 60.461 | 63.849 | 56.69 |  |  |  |
|  | 29/3 | 49.933 | 41.772 | 54.588 | 48.258 | 46.119 | 49.330 | 53.784 | 49.11 |  |  |  |
|  | 29/4 | 52.953 | 41.988 | 52.014 | 49.960 | 59.059 | 49.976 | 45.362 | 50.19 |  |  |  |
| 3 | 35/1 | 46.790 | 51.401 | 49.447 | 52.498 | 57.545 | 44.266 | 58.850 | 51.54 | 50.72 | 3.5 | 6.9 |
|  | 35/2 | 51.370 | 52.394 | 50.040 | 67.022 | 53.417 | 51.967 | 60.388 | 55.23 |  |  |  |
|  | 35/3 | 50.144 | 39.733 | 53.654 | 47.506 | 49.548 | 45.835 | 43.043 | 47.07 |  |  |  |
|  | 35/4 | 52.031 | 43.485 | 47.261 | 55.108 | 47.962 | 55.876 | 41.458 | 49.03 |  |  |  |
| 4 | 56/1 | 44.526 | 51.966 | 46.862 | 62.349 | 54.983 | 44.521 | 54.255 | 51.35 | 50.03 | 2.9 | 5.7 |
|  | 56/2 | 51.343 | 53.519 | 47.354 | 50.464 | 53.687 | 59.431 | 54.262 | 52.87 |  |  |  |
|  | 56/3 | 49.071 | 38.846 | 47.807 | 47.262 | 47.361 | 49.065 | 44.170 | 46.23 |  |  |  |
|  | 56/4 | 52.271 | 41.782 | 53.265 | 55.108 | 47.962 | 55.876 | 41.458 | 49.67 |  |  |  |
| 5 | 76/1 | 47.898 | 49.878 | 43.440 | 54.765 | 58.965 | 43.330 | 53.029 | 50.19 | 49.09 | 0.9 | 1.9 |
|  | 76/2 | 51.962 | 49.092 | 57.895 | 48.031 | 41.985 | 42.855 | 54.743 | 49.51 |  |  |  |
|  | 76/3 | 47.616 | 38.936 | 52.742 | 53.790 | 50.856 | 54.209 | 41.094 | 48.46 |  |  |  |
|  | 76/4 | 48.921 | 47.535 | 52.853 | 43.481 | 41.786 | 45.118 | 57.751 | 48.21 |  |  |  |
| 6 | 90/1 | 48.575 | 50.833 | 46.142 | 55.592 | 57.884 | 54.024 | 63.561 | 53.80 | 50.92 | 2.0 | 4.0 |
|  | 90/2 | 52.073 | 53.505 | 50.790 | 45.264 | 41.479 | 57.993 | 55.015 | 50.87 |  |  |  |
|  | 90/3 | 52.163 | 42.800 | 50.775 | 48.907 | 47.129 | 48.641 | 55.602 | 49.43 |  |  |  |
|  | 90/4 | 53.967 | 48.542 | 51.110 | 47.847 | 46.924 | 48.452 | 50.257 | 49.59 |  |  |  |
| 7 | 108/1 | 43.865 | 53.537 | 45.797 | 53.916 | 56.616 | 47.644 | 54.886 | 50.89 | 50.42 | 1.7 | 3.4 |
|  | 108/2 | 52.323 | 49.338 | 47.133 | 55.567 | 45.679 | 48.949 | 63.319 | 51.76 |  |  |  |
|  | 108/3 | 50.790 | 40.609 | 53.749 | 47.875 | 47.928 | 50.743 | 43.740 | 47.92 |  |  |  |
|  | 108/4 | 51.833 | 49.431 | 53.356 | 48.133 | 47.184 | 50.774 | 57.015 | 51.10 |  |  |  |
| 8 | 128/1 | 50.307 | 51.144 | 45.174 | 55.118 | 66.290 | 43.957 | 54.182 | 52.31 | 51.45 | 2.1 | 4.1 |
|  | 128/2 | 54.702 | 50.025 | 52.561 | 58.465 | 52.697 | 51.019 | 58.601 | 54.01 |  |  |  |
|  | 128/3 | 50.975 | 40.600 | 52.786 | 46.036 | 47.561 | 58.198 | 49.743 | 49.41 |  |  |  |
|  | 128/4 | 50.457 | 50.048 | 48.746 | 56.715 | 49.101 | 48.103 | 47.423 | 50.08 |  |  |  |

Analyt V

| Serial number | Sample number | mean calculated from 3 lines (16.02.00) | mean calculated from 3 lines (21.02.00) | mean calculated from 3 lines (23.02.00) | mean calculated from 3 lines (02.06.01) | mean calculated from 3 lines (06.06.01) | mean calculated from 3 lines (12.06.01) | mean calculated from 3 lines (30.05.01) | mean | mean of sub-samples 1-4 | $\begin{gathered} \text { SD of } \\ \text { sub-samples } \\ 1-4 \\ \hline \end{gathered}$ | $\begin{aligned} & \mathrm{RSD}_{\mathrm{w}} \\ & \text { (rel. \%) } \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | 132/1 | 49858 | 53643 | 40.924 | 50850 | 49148 | 526.99 | 58.390 | 50.79 | 49.96 | 2.1 | 4.1 |
|  | 132/2 | 48.556 | 53.835 | 49.439 | 56.028 | 56.250 | 42.677 | 57.226 | 52.00 |  |  |  |
|  | 132/3 | 53.743 | 42.123 | 51.069 | 47.622 | 46.986 | 46.001 | 61.520 | 49.87 |  |  |  |
|  | 132/4 | 48.443 | 48.894 | 49.995 | 48.226 | 44.436 | 54.189 | 36.031 | 47.17 |  |  |  |
| 10 | 156/1 | 48.936 | 53791 | 41627 | 60.597 | 53502 | 48.532 | 56352 | 51.91 | 49.84 | 2.9 | 5.9 |
|  | 156/2 | 54.176 | 54.500 | 50.596 | 51.171 | 51.961 | 49.570 | 57.760 | 52.82 |  |  |  |
|  | 156/3 | 49.117 | 42.970 | 50.908 | 47.682 | 51.605 | 43.553 | 44.791 | 47.23 |  |  |  |
|  | 156/4 | 49.968 | 46.264 | 51.218 | 46.175 | 49.609 | 50.253 | 38.383 | 47.41 |  |  |  |
| 11 | 164/1 | 49960 | 56137 | 41143 | 53250 | 63620 | 52414 | 54711 | 53.03 | 50.04 | 2.7 | 5.5 |
|  | 164/2 | 50.859 | 55.803 | 49.128 | 48.188 | 50.134 | 47.401 | 58.882 | 51.48 |  |  |  |
|  | 164/3 | 49.823 | 42.566 | 51.670 | 45.508 | 46.351 | 49.123 | 43.416 | 46.92 |  |  |  |
|  | 164/4 | 50.073 | 44.827 | 48.183 | 47.865 | 45.806 | 50.634 | 53.762 | 48.74 |  |  |  |
| 12 | 188/1 | 49808 | 53763 | 41141 | 54707 | 52283 | 50498 | 53625 | 50.83 | 50.25 | 3.3 | 6.5 |
|  | 188/2 | 54.660 | 52.820 | 51.123 | 51.946 | 49.393 | 58.171 | 63.931 | 54.58 |  |  |  |
|  | 188/3 | 50.050 | 41.632 | 49.367 | 50.190 | 45.200 | 49.317 | 44.527 | 47.18 |  |  |  |
|  | 188/4 | 49.001 | 45.816 | 49.377 | 47.072 | 47.724 | 57.371 | 42.547 | 48.42 |  |  |  |
| 13 | 195/1 | 48475 | 54810 | 3.344 | 628.97 | 54245 | 56021 | 57643 | 53.35 | 49.45 | 2.7 | 5.5 |
|  | 195/2 | 49.822 | 48.521 | 50.951 | 46.083 | 41.615 | 54.220 | 53.050 | 49.18 |  |  |  |
|  | 195/3 | 49.534 | 42.468 | 50.653 | 45.789 | 48.401 | 52.186 | 44.558 | 47.66 |  |  |  |
|  | 195/4 | 51.520 | 51.508 | 53.471 | 44.863 | 41.719 | 51.281 | 38.878 | 47.61 |  |  |  |
| 14 | 221/1 | 52.913 | 52626 | 41604 | 5068.9 | 53649 | 60898 | 52.937 | 52.19 | 49.47 | 2.0 | 4.0 |
|  | 221/2 | 52.047 | 44.946 | 47.895 | 48.863 | 54.679 | 49.892 | 45.434 | 49.11 |  |  |  |
|  | 221/3 | 50.910 | 42.571 | 48.679 | 47.336 | 50.562 | 56.624 | 46.816 | 49.07 |  |  |  |
|  | 221/4 | 51.188 | 50.128 | 50.023 | 42.292 | 45.711 | 48.212 | 44.966 | 47.50 |  |  |  |
| 15 | 229/1 | 53365 | 55300 | 42297 | 58005 | 53016 | 52428 | 61627 | 53.72 | 50.75 | 2.5 | 5.0 |
|  | 229/2 | 56.758 | 47.170 | 56.398 | 48.405 | 57.528 | 45.882 | 50.274 | 51.77 |  |  |  |
|  | 229/3 | 53.071 | 40.642 | 50.345 | 46.504 | 45.676 | 54.312 | 45.160 | 47.96 |  |  |  |
|  | 229/4 | 51.810 | 55.684 | 49.553 | 52.519 | 50.155 | 48.506 | 38.598 | 49.55 |  |  |  |
| 16 | 253/1 | 52462 | 58004 | 41019 | 61348 | 52.943 | 54275 | 55.317 | 53.62 | 51.04 | 1.9 | 3.8 |
|  | 253/2 | 49.414 | 44.175 | 52.359 | 52.859 | 48.147 | 46.497 | 57.340 | 50.11 |  |  |  |
|  | 253/3 | 51.217 | 45.000 | 47.356 | 47.762 | 56.135 | 55.221 | 56.034 | 51.25 |  |  |  |
|  | 253/4 | 46.388 | 49.107 | 53.554 | 46.525 | 45.061 | 55.924 | 47.571 | 49.16 |  |  |  |
| 17 | 264/1 | 48909 | 48904 | 47999 | 47785 | 48859 | 54397 | 64670 | 51.65 | 50.06 | 1.9 | 3.9 |
|  | 264/2 | 53.385 | 42.603 | 53.659 | 51.384 | 48.418 | 54.177 | 58.956 | 51.80 |  |  |  |
|  | 264/3 | 51.494 | 37.261 | 54.424 | 55.235 | 47.297 | 49.448 | 41.098 | 48.04 |  |  |  |
|  | 264/4 | 48.442 | 50.519 | 51.198 | 46.645 | 45.084 | 47.889 | 51.577 | 48.76 |  |  |  |
| 18 | 279/1 | 52672 | 52007 | 49933 | 52209 | 55173 | 47254 | 60436 | 52.81 | 51.17 | 1.2 | 2.4 |
|  | 279/2 | 53.703 | 45.232 | 51.097 | 53.309 | 50.678 | 56.043 | 48.001 | 51.15 |  |  |  |
|  | 279/3 | 50.642 | 37.221 | 52.659 | 54.038 | 51.481 | 60.046 | 49.716 | 50.83 |  |  |  |
|  | 279/4 | 51.998 | 49.825 | 52.881 | 48.571 | 47.234 | 60.359 | 38.419 | 49.90 |  |  |  |

Analyt V


Analyt V
HS = Homogeneous sample

| Serial number | Sample number | mean calculated from 3 lines (16.02.00) | mean calculated from 3 lines (21.02.00) | mean calculated from 3 lines $(23.02 .00)$ | mean calculated from 3 lines (02.06.01) | mean calculated from 3 lines (06.06.01) | mean calculated from 3 lines (12.06.01) | mean calculated from 3 lines (30.05.01) | mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | HS 1 | 48.746 | 56.657 | 47.772 | 55.818 | 57.990 | 55.456 | 62.660 | 55.01 |
| 2 | HS 2 | 44.579 | 53.622 | 42.421 | 59.341 | 51.907 | 46.269 | 56.537 | 50.67 |
| 3 | HS 3 | 50.531 | 58.052 | 41.704 | 53.805 | 58.699 | 55.891 | 57.191 | 53.70 |
| 4 | HS 4 | 52.245 | 54.641 | 41.554 | 54.140 | 52.874 | 49.414 | 59.349 | 52.03 |
| 5 | HS 5 | 51.408 | 56.844 | 45.434 | 54.513 | 56.373 | 49.910 | 56.157 | 52.95 |
| 6 | HS 6 | 51.485 | 48.368 | 47.293 | 51.612 | 52.473 | 57.167 | 56.366 | 52.11 |
| 7 | HS 7 | 50.960 | 51.210 | 53.125 | 51.660 | 49.936 | 48.825 | 47.226 | 50.42 |
| 8 | HS 8 | 54.818 | 50.511 | 45.963 | 47.800 | 52.809 | 49.525 | 68.170 | 52.80 |
| 9 | HS 9 | 52.168 | 44.311 | 53.566 | 46.298 | 50.023 | 48.630 | 57.854 | 50.41 |
| 10 | HS 10 | 52.834 | 42.542 | 52.430 | 53.859 | 48.668 | 52.040 | 51.367 | 50.53 |
| 11 | HS 11 | 53.331 | 41.383 | 52.258 | 43.267 | 50.980 | 43.748 | 47.785 | 47.54 |
| 12 | HS 12 | 51.246 | 40.434 | 51.179 | 46.674 | 47.280 | 43.915 | 51.648 | 47.48 |
| 13 | HS 13 | 50.320 | 43.531 | 49.719 | 48.811 | 59.782 | 51.761 | 60.252 | 52.03 |
| 14 | HS 14 | 51.313 | 42.058 | 50.619 | 41.079 | 45.580 | 54.159 | 51.432 | 48.03 |
| 15 | HS 15 | 49.662 | 43.798 | 54.764 | 48.405 | 48.237 | 50.365 | 49.251 | 49.21 |

HS = Homogeneous sample


| Homogeneity between the samples |  |  |  |
| :---: | :---: | :---: | :---: |
| Analysis of variance: $\quad \mathrm{a}=0.05$ |  |  |  |
| standard deviation within the samples $S_{w}$ | 2.49 | $\begin{gathered} \mathrm{M}_{\mathrm{Ss}} \\ 50.47 \end{gathered}$ | RSD \% <br> 1.4 |
| standard deviation between the samples $\mathrm{S}_{\mathrm{b}}$ | 1.41 | $F_{\text {value }}$ | 1.768 |
| test value $\mathrm{sb}^{2} / \mathrm{s}_{\mathrm{w}}{ }^{2}$ | 0.32 | Characteristic no. for homogeneity between the samples | 0.18 |
| Homogeneity between the samples: No significant inhomogeneity |  |  |  |


| Homogeneity within the samples |  |  |  |
| :---: | :---: | :---: | :---: |
| Analysis of variance: $\quad \mathrm{a}=0.05$ |  |  |  |
| standard deviation of homogeneous sample $\mathrm{S}_{\mathrm{HS}}$ | 2.23 | $\mathrm{M}_{\mathrm{HS}}$ <br> 50.54 | $\begin{gathered} \mathrm{RSD}_{\text {HS }} \% \\ 4.4 \end{gathered}$ |
|  |  | $\mathrm{F}_{\text {value }}$ | 1.98 |
| test value $\mathrm{s}_{\mathrm{w}}{ }^{2} / \mathrm{s}_{\mathrm{HS}}{ }^{2}$ | 1.24 | Characteristic no. for homogeneity within the samples | 0.62 |
| Homogeneity within the samples: No significant inhomogeneity |  |  |  |

ETV ICP OES-results (means of 2 spectral lines) measured on 4 different days
Measurements, compilation of results: ESK, Ceramics GmbH \& Co.KG, Kempten; Germany
Final evaluation: BAM, Federal Institute for Materials and Testing (Division I.1)
Analyt Zr
mass fraction in mg/kg

| Serial number | Sample number | mean calculated from 2 lines (02.06.01) | mean calculated from 2 lines (06.06.01) | mean calculated from 2 lines (12.06.01) | mean calculated from 2 lines $(30.05 .01)$ | mean | $\begin{gathered} \text { mean of } \\ \text { sub-samples } \\ 1-4 \\ \hline \hline \end{gathered}$ | $\begin{gathered} \text { SD of } \\ \text { sub-samples } \\ 1-4 \\ \hline \hline \end{gathered}$ | $\mathrm{RSD}_{\mathrm{w}}$ (rel.\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2/1 | 23.860 | 22.666 | 24.685 | 23.897 | 23.78 | 22.17 | 1.1 | 4.9 |
|  | 2/2 | 22.628 | 22.686 | 21.223 | 20.912 | 21.86 |  |  |  |
|  | 2/3 | 20.854 | 22.895 | 22.810 | 19.307 | 21.47 |  |  |  |
|  | 2/4 | 22.586 | 21.553 | 23.530 | 18.690 | 21.59 |  |  |  |
| 2 | 29/1 | 22.161 | 21.374 | 23.826 | 20.848 | 22.05 | 21.71 | 1.0 | 4.8 |
|  | 29/2 | 23.913 | 22.669 | 22.379 | 22.710 | 22.92 |  |  |  |
|  | 29/3 | 20.857 | 23.660 | 20.735 | 20.372 | 21.41 |  |  |  |
|  | 29/4 | 21.602 | 19.663 | 20.936 | 19.632 | 20.46 |  |  |  |
| 3 | 35/1 | 21.499 | 24.110 | 21.859 | 23.784 | 22.81 | 22.19 | 0.6 | 2.6 |
|  | 35/2 | 19.914 | 22.504 | 21.849 | 23.064 | 21.83 |  |  |  |
|  | 35/3 | 21.090 | 21.720 | 21.690 | 21.914 | 21.60 |  |  |  |
|  | 35/4 | 21.965 | 21.321 | 22.877 | 23.944 | 22.53 |  |  |  |
| 4 | 56/1 | 22.092 | 21.982 | 20.510 | 22.566 | 21.79 | 21.86 | 0.3 | 1.4 |
|  | 56/2 | 23.267 | 21.236 | 23.272 | 21.446 | 22.31 |  |  |  |
|  | 56/3 | 21.850 | 21.461 | 21.170 | 22.670 | 21.79 |  |  |  |
|  | 56/4 | 21.685 | 21.273 | 21.913 | 21.440 | 21.58 |  |  |  |
| 5 | 76/1 | 21.402 | 21.427 | 20.936 | 21.669 | 21.36 | 22.08 | 0.5 | 2.3 |
|  | 76/2 | 22.590 | 22.036 | 22.534 | 22.078 | 22.31 |  |  |  |
|  | 76/3 | 21.725 | 23.720 | 20.567 | 22.500 | 22.13 |  |  |  |
|  | 76/4 | 23.639 | 21.484 | 22.697 | 22.255 | 22.52 |  |  |  |
| 6 | 90/1 | 22.460 | 22.360 | 22.654 | 21.232 | 22.18 | 22.36 | 0.3 | 1.5 |
|  | 90/2 | 22.444 | 22.821 | 21.248 | 22.119 | 22.16 |  |  |  |
|  | 90/3 | 21.931 | 21.880 | 24.224 | 23.385 | 22.85 |  |  |  |
|  | 90/4 | 22.799 | 22.455 | 22.469 | 21.295 | 22.25 |  |  |  |
| 7 | 108/1 | 22.683 | 22.964 | 23.612 | 22.879 | 23.03 | 22.14 | 0.8 | 3.5 |
|  | 108/2 | 24.453 | 22.552 | 22.366 | 20.899 | 22.57 |  |  |  |
|  | 108/3 | 22.715 | 22.811 | 20.049 | 20.576 | 21.54 |  |  |  |
|  | 108/4 | 23.463 | 22.851 | 21.262 | 18.159 | 21.43 |  |  |  |
| 8 | 128/1 | 23.768 | 22.740 | 16.471 | 21.812 | 21.20 | 21.80 | 0.5 | 2.2 |
|  | 128/2 | 23.790 | 20.387 | 19.615 | 22.836 | 21.66 |  |  |  |
|  | 128/3 | 22.633 | 21.419 | 20.709 | 23.290 | 22.01 |  |  |  |
|  | 128/4 | 21.906 | 23.507 | 23.280 | 20.589 | 22.32 |  |  |  |

Analytzr

| Serial number | Sample number | mean calculated from 2 lines (02.06.01) | mean calculated from 2 lines (06.06.01) | mean calculated from 2 lines (12.06.01) | mean calculated from 2 lines (30.05.01) | mean | mean of sub-samples 1-4 | $\begin{gathered} \text { SD of } \\ \text { sub-samples } \\ 1-4 \\ \hline \hline \end{gathered}$ | $\mathrm{RSD}_{\mathrm{w}}$ (rel.\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | 132/1 | 20.530 | 22.392 | 20.720 | 22.094 | 21.43 | 21.98 | 0.9 | 3.9 |
|  | 132/2 | 21.718 | 25.323 | 22.655 | 23.356 | 23.26 |  |  |  |
|  | 132/3 | 22.604 | 22.402 | 23.559 | 17.995 | 21.64 |  |  |  |
|  | 132/4 | 21.923 | 21.888 | 21.940 | 20.617 | 21.59 |  |  |  |
| 10 | 156/1 | 21.295 | 21.103 | 23.558 | 22.650 | 22.15 | 22.23 | 1.0 | 4.4 |
|  | 156/2 | 24.497 | 23.194 | 22.722 | 21.265 | 22.92 |  |  |  |
|  | 156/3 | 22.167 | 22.802 | 22.796 | 24.180 | 22.99 |  |  |  |
|  | 156/4 | 19.991 | 19.687 | 21.913 | 21.866 | 20.86 |  |  |  |
| 11 | 164/1 | 21.303 | 23.484 | 25.394 | 22.774 | 23.24 | 21.97 | 1.1 | 4.9 |
|  | 164/2 | 21.729 | 21.720 | 22.202 | 23.220 | 22.22 |  |  |  |
|  | 164/3 | 20.449 | 20.662 | 23.761 | 22.138 | 21.75 |  |  |  |
|  | 164/4 | 21.499 | 20.601 | 21.124 | 19.418 | 20.66 |  |  |  |
| 12 | 188/1 | 21.609 | 21.027 | 24.045 | 23.109 | 22.45 | 22.22 | 0.3 | 1.4 |
|  | 188/2 | 20.581 | 22.704 | 21.941 | 22.352 | 21.89 |  |  |  |
|  | 188/3 | 22.841 | 21.665 | 20.517 | 23.013 | 22.01 |  |  |  |
|  | 188/4 | 21.690 | 21.565 | 24.875 | 21.941 | 22.52 |  |  |  |
| 13 | 195/1 | 23.448 | 22.409 | 22.007 | 22.408 | 22.57 | 21.88 | 0.6 | 2.6 |
|  | 195/2 | 21.328 | 22.110 | 22.844 | 21.104 | 21.85 |  |  |  |
|  | 195/3 | 19.454 | 21.748 | 21.812 | 21.767 | 21.20 |  |  |  |
|  | 195/4 | 23.035 | 21.927 | 20.720 | 22.037 | 21.93 |  |  |  |
| 14 | 221/1 | 21.770 | 21.537 | 21.870 | 22.791 | 21.99 | 22.08 | 0.9 | 3.9 |
|  | 221/2 | 21.923 | 22.593 | 25.146 | 22.394 | 23.01 |  |  |  |
|  | 221/3 | 21.162 | 24.209 | 20.810 | 23.198 | 22.34 |  |  |  |
|  | 221/4 | 21.710 | 21.175 | 19.778 | 21.160 | 20.96 |  |  |  |
| 15 | 229/1 | 22.265 | 20.628 | 20.296 | 20.853 | 21.01 | 21.50 | 0.7 | 3.0 |
|  | 229/2 | 21.879 | 22.777 | 21.683 | 22.566 | 22.23 |  |  |  |
|  | 229/3 | 20.619 | 21.572 | 23.596 | 21.730 | 21.88 |  |  |  |
|  | 229/4 | 21.578 | 20.012 | 21.216 | 20.781 | 20.90 |  |  |  |
| 16 | 253/1 | 22.875 | 21.076 | 22.684 | 22.686 | 22.33 | 22.07 | 0.5 | 2.2 |
|  | 253/2 | 21.251 | 21.425 | 22.839 | 22.582 | 22.02 |  |  |  |
|  | 253/3 | 20.324 | 22.231 | 21.818 | 21.198 | 21.39 |  |  |  |
|  | 253/4 | 21.956 | 21.718 | 22.454 | 23.978 | 22.53 |  |  |  |
| 17 | 264/1 | 22.947 | 22.433 | 21.886 | 22.981 | 22.56 | 21.68 | 0.7 | 3.1 |
|  | 264/2 | 23.230 | 21.230 | 23.088 | 19.756 | 21.83 |  |  |  |
|  | 264/3 | 19.478 | 23.608 | 21.054 | 20.214 | 21.09 |  |  |  |
|  | 264/4 | 21.769 | 20.777 | 20.857 | 21.593 | 21.25 |  |  |  |
| 18 | 279/1 | 21.965 | 23.108 | 24.334 | 21.714 | 22.78 | 22.15 | 0.5 | 2.5 |
|  | 279/2 | 21.160 | 21.166 | 22.952 | 23.206 | 22.12 |  |  |  |
|  | 279/3 | 22.658 | 22.300 | 22.426 | 21.552 | 22.23 |  |  |  |
|  | 279/4 | 21.910 | 21.211 | 21.240 | 21.420 | 21.45 |  |  |  |

Analyt Zr


## Analyt Zr

HS = Homogeneous sample

| Serial <br> number | Sample <br> number | mean <br> calculated <br> from 2 lines <br> $(02.06 .01)$ | mean <br> calculated <br> from 2 lines <br> $(06.06 .01)$ | mean <br> calculated <br> from 2 lines <br> $(12.06 .01)$ | mean <br> calculated <br> from 2 lines <br> $(30.05 .01)$ | mean |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
| 1 | HS 1 | 21.487 | 21.838 | 21.549 | 22.812 | $\mathbf{2 1 . 9 2}$ |
| 2 | HS 2 | 20.764 | 22.228 | 20.935 | 23.825 | $\mathbf{2 1 . 9 4}$ |
| 3 | HS 3 | 21.419 | 19.974 | 22.135 | 21.654 | $\mathbf{2 1 . 3 0}$ |
| 4 | HS 4 | 21.814 | 19.124 | 22.528 | 23.510 | $\mathbf{2 1 . 7 4}$ |
| 5 | HS 5 | 20.909 | 22.139 | 22.195 | 23.868 | $\mathbf{2 2 . 2 8}$ |
| 6 | HS 6 | 22.737 | 21.631 | 23.040 | 22.453 | $\mathbf{2 2 . 4 7}$ |
| 7 | HS 7 | 21.106 | 21.184 | 21.605 | 21.597 | $\mathbf{2 1 . 3 7}$ |
| 8 | HS 8 | 21.685 | 22.954 | 20.428 | 21.872 | $\mathbf{2 1 . 7 3}$ |
| 9 | HS 9 | 21.013 | 23.371 | 22.100 | 22.384 | $\mathbf{2 2 . 2 2}$ |
| 10 | HS 10 | 22.125 | 20.980 | 20.642 | 22.867 | $\mathbf{2 1 . 6 5}$ |
| 11 | HS 11 | 22.066 | 21.529 | 21.970 | 20.297 | $\mathbf{2 1 . 4 7}$ |
| 12 | HS 12 | 22.890 | 21.802 | 22.331 | 19.712 | $\mathbf{2 1 . 6 8}$ |
| 13 | HS 13 | 23.203 | 22.224 | 22.254 | 20.465 | $\mathbf{2 2 . 0 4}$ |
| 14 | HS 14 | 22.167 | 20.736 | 21.075 | 22.441 | $\mathbf{2 1 . 6 0}$ |
| 15 | HS 15 | 22.857 | 22.336 | 20.627 | 21.015 | $\mathbf{2 1 . 7 1}$ |

HS = Homogeneous sample

| 16 | HS 16 | 20.949 | 22.269 | 22.810 | 23.536 | $\mathbf{2 2 . 3 9}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 17 | HS 17 | 21.337 | 21.668 | 22.887 | 22.673 | $\mathbf{2 2 . 1 4}$ |
| 18 | HS 18 | 21.147 | 21.719 | 23.019 | 21.101 | $\mathbf{2 1 . 7 5}$ |
| 19 | HS 19 | 21.384 | 24.643 | 23.856 | 21.421 | $\mathbf{2 2 . 8 3}$ |
| 20 | HS 20 | 23.228 | 22.015 | 22.929 | 21.507 | $\mathbf{2 2 . 4 2}$ |

$\mathrm{M}_{\mathrm{HS}}$ - mean of
homogeneou
s sample
21.93
$\mathrm{SD}_{\text {HS }}$
0.41

RSD $_{\text {HS }}$ (\%)

| Homogeneity between the samples |  |  |  |
| :---: | :---: | :---: | :---: |
| Analysis of variance: $\mathrm{a}=0.05$ |  |  |  |
| standard deviation within the samples $\mathrm{S}_{\mathrm{w}}$ | 0.73 | $\begin{gathered} \mathrm{M}_{\mathrm{ss}} \\ 22.02 \end{gathered}$ | RSD \% <br> 1.1 |
| standard deviation between the samples $S_{b}$ | $0.48$ | $F_{\text {value }}$ | 1.768 |
| test value $\mathrm{s}_{\mathrm{b}}^{2} / \mathrm{s}_{\mathrm{w}}^{2}$ | 0.42 | Characteristic no. for homogeneity between the samples | 0.24 |
| Homogeneity between the samples: No significant inhomogeneity |  |  |  |


| Homogeneity within the samples |  |  |  |
| :---: | :---: | :---: | :---: |
| Analysis of variance: $\mathrm{a}=0.05$ |  |  |  |
| standard deviation of homogeneous sample $\mathrm{S}_{\mathrm{HS}}$ | 0.41 | $\begin{gathered} \mathrm{M}_{\mathrm{HS}} \\ 21.93 \end{gathered}$ | $\begin{gathered} \mathrm{RSD}_{\text {HS }} \% \\ 1.8 \\ \hline \end{gathered}$ |
|  |  | $F_{\text {value }}$ | 1.98 |
| test value $\mathrm{S}_{\mathrm{w}}{ }^{2} / \mathrm{S}_{\mathrm{HS}}{ }^{2}$ | 3.28 | Characteristic no. for homogeneity within the samples | 1.66 |
| Homogeneity within the samples: <br> Significant not very strong inhomogeneity |  |  |  |

ICP OES results
Measurements, compilation of results: HC Starck GmbH \& Co. KG, Goslar
Final evaluation: BAM, Federal Institute for Materials and Testing (Division I.1)
Analyt B
mass fraction in mg/kg


Analyt B

| Serial number | Sample number | values |
| :---: | :---: | :---: |
| 1 | HS 1 | 63.9 |
| 2 | HS 2 | 62.9 |
| 3 | HS 3 | 63.8 |
| 4 | HS 4 | 62.4 |
| 5 | HS 5 | 63.7 |
| 6 | HS 6 | 61.5 |
| 7 | HS 7 | 63.1 |
| 8 | HS 8 | 63.2 |
| 9 | HS 9 | 62.0 |
| 10 | HS 10 | 62.7 |


| Serial number | Sample number | values |
| :---: | :---: | :---: |
| 11 | HS 11 | 60.1 |
| 12 | HS 12 | 61.7 |
| 13 | HS 13 | 63.8 |
| 14 | HS 14 | 60.7 |
| 15 | HS 15 | 62.5 |
| 16 | HS 16 | 61.6 |
| 17 | HS 17 | 60.4 |
| 18 | HS 18 | 60.0 |
| 19 | HS 19 | 61.8 |
| 20 | HS 20 | 59.6 |
| $\mathbf{M}_{\mathrm{HS}}$ - mean of homogeneous sample |  | 62.07 |
| SD ${ }_{\text {HS }}$ |  | 1.365 |
| $\mathrm{RSD}_{\text {HS }}$ (\%) |  | 2.20 |


| Homogeneity between the samples |  |  |  |
| :---: | :---: | :---: | :---: |
| Analysis of variance: $\alpha=0.05$ |  |  |  |
| standard deviation within the samples $\mathrm{s}_{\mathrm{w}}$ | 0.934 | $\begin{gathered} M_{\mathrm{Ss}} \\ 60.59 \end{gathered}$ | RSD \% <br> 3.28 |
| standard deviation between the samples $\mathrm{S}_{\mathrm{b}}$ | $3.438$ | $\mathrm{F}_{\text {value }}$ | 2.39 |
| test value $\mathrm{s}_{\mathrm{b}}{ }^{2} / \mathrm{s}_{\mathrm{w}}{ }^{2}$ | 13.543 | Characteristic no. for homogeneity between the samples | 5.669 |
| Homogeneity between the samples: Significant inhomogeneity |  |  |  |


| Homogeneity within the samples |  |  |  |
| :---: | :---: | :---: | :---: |
| Analysis of variance: $\mathrm{a}=0.05$ |  |  |  |
| standard deviation of homogeneous sample $\mathrm{S}_{\mathrm{HS}}$ | 1.365 | $\begin{gathered} \mathrm{M}_{\mathrm{HS}} \\ 62.07 \end{gathered}$ | RSD \% <br> 2.20 |
|  |  | $\mathrm{F}_{\text {value }}$ | 2.16 |
| test value $\mathrm{s}_{\mathrm{w}}{ }^{2} / \mathrm{s}_{\mathrm{HS}}{ }^{2}$ | 0.468 | Characteristic no. for homogeneity within the samples | 0.217 |
| Homogeneity within the samples: No significant inhomogeneity |  |  |  |

Measurements, compilation of results: H.C. Starck GmbH \& Co.KG, Goslar; Germany Final evaluation: BAM, Federal Institute for Materials and Testing (Division I.1)

Analyt Na
mass fraction in mg/kg
$\begin{array}{||c|r|c|c|c|c||}\hline \begin{array}{l}\text { Serial } \\ \text { number }\end{array} & \text { Sample number }\end{array} \quad$ values $\left.\begin{array}{c}\text { mean of } \\ \text { sub-samples } \\ \mathbf{1 - 3}\end{array}\right)$
$\mathrm{M}_{\mathrm{ss}}$ - mean of
means of the
sub-samples 1-3 19.0
SD of means of
the sub-samples
1-3
0.2819

RSD (rel.\%)
1.48

## Analyt Na

## HS = Homogeneous sample

| Serial <br> number | sample number | values |
| :--- | :---: | :---: |
| 1 | HS 1 | $\mathbf{1 9 . 1}$ |
| 2 | HS 2 | $\mathbf{1 9 . 6}$ |
| 3 | HS 3 | $\mathbf{1 8 . 8}$ |
| 4 | HS 4 | $\mathbf{1 9 . 9}$ |
| 5 | HS 5 | $\mathbf{1 9 . 3}$ |
| 6 | HS 6 | $\mathbf{1 9 . 5}$ |
| 7 | HS 7 | $\mathbf{1 9 . 6}$ |
| 8 | HS 8 | $\mathbf{1 9 . 2}$ |
| 9 | HS 9 | $\mathbf{1 9 . 9}$ |
| 10 | HS 10 | $\mathbf{1 9 . 6}$ |


| Serial <br> number | sample number | values |
| :--- | :---: | :---: |
| 11 | HS 11 | $\mathbf{1 9 . 9}$ |
| 12 | HS 12 | $\mathbf{1 9 . 1}$ |
| 13 | HS 13 | $\mathbf{1 8 . 4}$ |
| 14 | HS 14 | $\mathbf{1 9 . 6}$ |
| 15 | HS 15 | $\mathbf{1 9 . 7}$ |
| 16 | HS 16 | $\mathbf{1 9 . 8}$ |
| 17 | HS 17 | $\mathbf{1 8 . 5}$ |
| 18 | HS 18 | $\mathbf{2 0 . 1}$ |
| 19 | HS 19 | $\mathbf{1 9 . 4}$ |
| 20 | HS 20 | $\mathbf{2 0 . 1}$ |

$\mathrm{M}_{\text {HS }}$ - mean o
homogeneous
sample
19.46
$\mathrm{SD}_{\text {HS }} \quad 0.486$
$\mathrm{RSD}_{\text {HS }}$ (\%) 0.50

| Homogeneity between the samples |  |  |  |
| :---: | :---: | :---: | :---: |
| Analysis of variance: $\mathrm{a}=0.05$ |  |  |  |
| standard deviation within the samples $\mathrm{s}_{\mathrm{w}}$ | 0.341 | $\begin{gathered} \mathrm{M}_{\mathrm{Ss}} \\ 19.04 \end{gathered}$ | $\begin{gathered} \text { RSD \% } \\ 1.48 \end{gathered}$ |
| standard deviation between the samples $\mathrm{S}_{\mathrm{b}}$ | $0.488$ | $F_{\text {value }}$ | 2.39 |
| test value $\mathrm{s}_{\mathrm{b}} / \mathrm{s}_{\mathrm{w}}{ }^{2}$ | 2.049 | Characteristic no. for homogeneity between the samples | 0.857 |
| Homogeneity between the samples: No significant inhomogeneity |  |  |  |


| Homogeneity within the samples |  |  |  |
| :---: | :---: | :---: | :---: |
| Analysis of variance: $\mathrm{a}=0.05$ |  |  |  |
| standard deviation of homogeneous sample $\mathrm{S}_{\mathrm{HS}}$ | 0.486 | $\mathrm{M}_{\mathrm{HS}}$ 19.46 | $\begin{gathered} \text { RSD }_{\text {нs }} \% \\ 2.50 \end{gathered}$ |
|  |  | $\mathrm{F}_{\text {value }}$ | 2.16 |
| test value $\mathrm{s}_{\mathrm{w}}{ }^{2} / \mathrm{s}_{\mathrm{HS}}{ }^{2}$ | 0.493 | Characteristic no. for homogeneity within the samples | 0.228 |
| Homogeneity within the samples: No significant inhomogeneity |  |  |  |

Measurements, compilation of results: ESK, Ceramics GmbH \& Co.KG, Kempten; Germany
Final evaluation: BAM, Federal Institute for Materials and Testing (Division I.1)
Analyt: C $_{\text {total }}$
mass fraction in mass \%

| Serial number | Sample number | 1. measurement | 2. measurement | mean | mean of subsamples 1-4 | SD of subsamples 1-4 | RSD ${ }_{\text {w }}$ (rel.\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | O/8/1 | 29.838 | 29.819 | 29.829 | 29.903 | 0.056 | 0.19 |
|  | 0/8/3 | 29.902 | 29.915 | 29.909 |  |  |  |
|  | O/8/5 | 29.972 | 29.958 | 29.965 |  |  |  |
|  | 0/8/7 | 29.900 | 29.921 | 29.911 |  |  |  |
| 2 | O/56/1 | 29.868 | 29.819 | 29.844 | 29.886 | 0.042 | 0.14 |
|  | 0/56/3 | 29.865 | 29.939 | 29.902 |  |  |  |
|  | O/56/5 | 29.872 | 29.848 | 29.860 |  |  |  |
|  | O/56/7 | 29.904 | 29.971 | 29.938 |  |  |  |
| 3 | O/76/1 | 29.936 | 29.890 | 29.913 | 29.881 | 0.035 | 0.12 |
|  | 0/76/3 | 29.915 | 29.894 | 29.905 |  |  |  |
|  | 0/76/5 | 29.815 | 29.857 | 29.836 |  |  |  |
|  | 0/76/7 | 29.851 | 29.889 | 29.870 |  |  |  |
| 4 | O/128/1 | 29.917 | 29.992 | 29.955 | 29.935 | 0.035 | 0.12 |
|  | O/128/3 | 29.967 | 29.966 | 29.967 |  |  |  |
|  | O/128/5 | 29.902 | 29.870 | 29.886 |  |  |  |
|  | O/128/7 | 29.913 | 29.956 | 29.935 |  |  |  |
| 5 | O/143/1 | 29.895 | 29.900 | 29.898 | 29.883 | 0.026 | 0.09 |
|  | O/143/3 | 29.961 | 29.858 | 29.910 |  |  |  |
|  | O/143/5 | 29.873 | 29.873 | 29.873 |  |  |  |
|  | O/143/7 | 29.828 | 29.875 | 29.852 |  |  |  |
| 6 | O/188/1 | 29.994 | 29.898 | 29.946 | 29.901 | 0.041 | 0.14 |
|  | O/188/3 | 29.948 | 29.900 | 29.924 |  |  |  |
|  | O/188/5 | 29.875 | 29.840 | 29.858 |  |  |  |
|  | O/188/7 | 29.888 | 29.865 | 29.877 |  |  |  |
| 7 | 0/203/1 | 29.905 | 29.806 | 29.856 | 29.893 | 0.054 | 0.18 |
|  | O/203/3 | 29.937 | 29.963 | 29.950 |  |  |  |
|  | O/203/5 | 29.886 | 29.968 | 29.927 |  |  |  |
|  | O/203/7 | 29.834 | 29.842 | 29.838 |  |  |  |
| 8 | O/229/1 | 29.896 | 29.972 | 29.934 | 29.931 | 0.025 | 0.08 |
|  | O/229/3 | 29.957 | 29.934 | 29.946 |  |  |  |
|  | O/229/5 | 29.920 | 29.868 | 29.894 |  |  |  |
|  | 0/229/7 | 29.955 | 29.942 | 29.949 |  |  |  |

Analyt: $\mathrm{C}_{\text {total }}$

| Serial number | Sample number | 1. measurement | 2. measurement | mean | mean of subsamples 1-4 | SD of subsamples 1-4 | RSD ${ }_{\text {w }}$ (rel.\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | O/286/1 | 29.885 | 29.935 | 29.910 | 29.909 | 0.066 | 0.22 |
|  | O/286/3 | 29.864 | 29.939 | 29.902 |  |  |  |
|  | O/286/5 | 29.812 | 29.853 | 29.833 |  |  |  |
|  | O/286/7 | 29.994 | 29.993 | 29.994 |  |  |  |
| 10 | O/294/1 | 29.859 | 29.842 | 29.851 | 29.885 | 0.069 | 0.23 |
|  | O/294/3 | 29.811 | 29.810 | 29.811 |  |  |  |
|  | O/294/5 | 29.976 | 29.964 | 29.970 |  |  |  |
|  | O/294/7 | 29.977 | 29.838 | 29.908 |  |  |  |


| $\mathbf{M}_{\text {Ss }}$ - mean of means <br> of the sub-samples | 29.901 |
| :--- | :--- |
| SD of means of the <br> sub-samples | 0.020 |


| RSD $($ rel. \%) | 0.07 |
| :--- | :--- |

mean RSD (\%) $\qquad$

## Analyt: $\mathrm{C}_{\text {total }}$

HS = Homogeneous sample

| Serial <br> number | Sample <br> number | 1. measurement |
| :--- | :---: | :---: |
| 1 | HS 1 | 30.04 |
| 2 | HS 2 | 29.9 |
| 3 | HS 3 | 30.02 |
| 4 | HS 4 | 29.89 |
| 5 | HS 5 | 29.91 |
| 6 | HS 6 | 30.01 |
| 7 | HS 7 | 30.01 |
| 8 | HS 8 | 30.01 |
| 9 | HS 9 | 30.04 |
| 10 | HS 10 | 30.04 |
| 11 | HS 11 | 30.02 |

$M_{\text {Hs }}$ - mean of
homogeneous
sample
29.99

SD $_{\text {HS }}$ 0.059

RSD $_{\text {HS }}$ (\%) 0.20

## Analyt $\mathrm{C}_{\text {total }}$

| Homogeneity between the samples |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 0.047 |  |  |  | $\mathrm{M}_{\mathrm{Ss}}$ <br> Analysis of variance: $\mathrm{a}=0.05$ | $\mathrm{RSD} \%$ |
| standard deviation <br> within the samples <br> $\mathrm{s}_{\mathrm{w}}$ | 0.90 | 0.07 |  |  |  |
| standard deviation <br> between the <br> samples $\mathrm{s}_{\mathrm{b}}$ | 0.039 | $\mathrm{~F}_{\text {value }}$ |  |  |  |


| Homogeneity within the samples |  |  |  |
| :---: | :---: | :---: | :---: |
| Analysis of variance: $a=0.05$ |  |  |  |
| standard deviation of homogeneous sample SHS |  | $\mathrm{M}_{\mathrm{HS}}$ | RSD ${ }_{\text {HS }}$ \% |
|  |  | 29.99 | 0.20 |
|  |  | $F_{\text {value }}$ | 2.70 |
| test value $\mathrm{S}_{\mathrm{w}}{ }^{2} / \mathrm{S}_{\mathrm{HS}}{ }^{2}$ | 0.635 | Characteristic no. for homogeneity within the samples | 0.235 |
| Homogeneity within the samples: No significant inhomogeneity |  |  |  |

Measurements, compilation of results: ESK, Ceramics GmbH \& Co.KG, Kempten; Germany
Final evaluation: BAM, Federal Institute for Materials and Testing (Division I.1)

Analyt: $\mathrm{C}_{\text {free }}$
mass fraction in mg/kg

| Serial number | Sample number | 1. measurement | 2. measurement | mean | mean of subsamples 1-4 | SD of subsamples 1-4 | $\mathrm{RSD}_{\mathrm{w}}$ (rel.\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | C/8/1 | 610 | 590 | 600 | 610.00 | 14.720 | 2.41 |
|  | C/8/3 | 630 | 610 | 620 |  |  |  |
|  | C/8/5 | 620 | 630 | 625 |  |  |  |
|  | C/8/7 | 600 | 590 | 595 |  |  |  |
| 2 | C/56/1 | 630 | 620 | 625 | 612.50 | 11.902 | 1.94 |
|  | C/56/3 | 600 | 610 | 605 |  |  |  |
|  | C/56/5 | 600 | 600 | 600 |  |  |  |
|  | C/56/7 | 620 | 620 | 620 |  |  |  |
| 3 | C/76/1 | 620 | 580 | 600 | 617.50 | 14.434 | 2.34 |
|  | C/76/3 | 600 | 630 | 615 |  |  |  |
|  | C/76/5 | 640 | 630 | 635 |  |  |  |
|  | C/76/7 | 620 | 620 | 620 |  |  |  |
| 4 | C/128/1 | 610 | 600 | 605 | 608.75 | 7.500 | 1.23 |
|  | C/128/3 | 610 | 600 | 605 |  |  |  |
|  | C/128/5 | 620 | 620 | 620 |  |  |  |
|  | C/128/7 | 590 | 620 | 605 |  |  |  |
| 5 | C/143/1 | 620 | 620 | 620 | 631.25 | 19.311 | 3.06 |
|  | C/143/3 | 650 | 640 | 645 |  |  |  |
|  | C/143/5 | 600 | 620 | 610 |  |  |  |
|  | C/143/7 | 650 | 650 | 650 |  |  |  |
| 6 | C/188/1 | 600 | 590 | 595 | 602.50 | 8.660 | 1.44 |
|  | C/188/3 | 640 | 580 | 610 |  |  |  |
|  | C/188/5 | 630 | 590 | 610 |  |  |  |
|  | C/188/7 | 590 | 600 | 595 |  |  |  |
| 7 | C/203/1 | 610 | 620 | 615 | 623.75 | 16.520 | 2.65 |
|  | C/203/3 | 620 | 590 | 605 |  |  |  |
|  | C/203/5 | 640 | 640 | 640 |  |  |  |
|  | C/203/7 | 630 | 640 | 635 |  |  |  |
| 8 | C/229/1 | 630 | 650 | 640 | 643.75 | 11.087 | 1.72 |
|  | C/229/3 | 590 | 670 | 630 |  |  |  |
|  | C/229/5 | 670 | 630 | 650 |  |  |  |
|  | C/229/7 | 640 | 670 | 655 |  |  |  |

Analyt $\mathbf{C}_{\text {free }}$

|  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | C/286/1 | 570 | 610 | 590 | 625.00 | 33.417 | 5.35 |
|  | C/286/3 | 620 | 610 | 615 |  |  |  |
|  | C/286/5 | 610 | 640 | 625 |  |  |  |
|  | C/286/7 | 670 | 670 | 670 |  |  |  |
| 10 | C/294/1 | 640 | 640 | 640 | 655.00 | 20.412 | 3.12 |
|  | C/294/3 | 630 | 640 | 635 |  |  |  |
|  | C/294/5 | 670 | 680 | 675 |  |  |  |
|  | C/294/7 | 670 | 670 | 670 |  |  |  |

$\mathbf{M}_{\mathrm{Ss}}$ - mean of
means of the sub-
samples 1-4 623.000

SD of means of

| SD of means of <br> the sub-samples <br> $1-4$ |
| :--- | ---: |

RSD (rel.\%) 2.65
$\qquad$

| Homogeneity between the samples |  |  |  |
| :---: | :---: | :---: | :---: |
| Analysis of variance: $\mathrm{a}=0.05$ |  |  |  |
| standard deviation within the samples $\mathrm{s}_{\mathrm{w}}$ | 17.32 | $\mathrm{M}_{\mathrm{Ss}}$ <br> 623.0 | RSD \% <br> 2.65 |
| standard deviation between the samples $\mathrm{S}_{\mathrm{b}}$ | $33.07$ | $F_{\text {value }}$ | 2.21 |
| test value $\mathrm{s}_{\mathrm{b}}{ }^{2} / \mathrm{s}_{\mathrm{w}}{ }^{2}$ | 3.644 | Characteristic no. for homogeneity between the samples | 1.649 |
| Homogeneity between the samples: Significant not very strong inhomogeneity |  |  |  |

Measurements, compilation of results: ESK, Ceramics GmbH \& Co.KG, Kempten; Germany Final evaluation: BAM, Federal Institute for Materials and Testing (Division I.1)

Analyt: 0
mass fraction in mg/kg

| Serial number | Sample number | 1. measurement | 2. measurement | mean | $\begin{gathered} \hline \hline \text { mean of } \\ \text { sub-samples } \\ 1-4 \\ \hline \end{gathered}$ | SD of sub-samples $1-4$ | $\begin{gathered} \mathrm{RSD}_{\mathrm{w}} \\ \text { (rel.\%) } \\ \hline \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 008/2 | 912 | 919 | 916 | 907.25 | 5.909 | 0.65 |
|  | 008/4 | 909 | 894 | 902 |  |  |  |
|  | 008/6 | 913 | 898 | 906 |  |  |  |
|  | 008/8 | 903 | 910 | 907 |  |  |  |
| 2 | 056/2 | 905 | 926 | 916 | 911.38 | 9.437 | 1.04 |
|  | 056/4 | 899 | 904 | 902 |  |  |  |
|  | 056/6 | 908 | 937 | 923 |  |  |  |
|  | 056/8 | 900 | 912 | 906 |  |  |  |
| 3 | 076/2 | 919 | 894 | 907 | 909.13 | 8.702 | 0.96 |
|  | 076/4 | 912 | 898 | 905 |  |  |  |
|  | 076/6 | 930 | 914 | 922 |  |  |  |
|  | 076/8 | 891 | 915 | 903 |  |  |  |
| 4 | 128/2 | 897 | 895 | 896 | 913.88 | 13.098 | 1.43 |
|  | 128/4 | 910 | 923 | 917 |  |  |  |
|  | 128/6 | 929 | 926 | 928 |  |  |  |
|  | 128/8 | 925 | 906 | 916 |  |  |  |
| 5 | 143/2 | 890 | 917 | 904 | 895.50 | 8.689 | 0.97 |
|  | 143/4 | 894 | 888 | 891 |  |  |  |
|  | 143/6 | 900 | 904 | 902 |  |  |  |
|  | 143/8 | 889 | 882 | 886 |  |  |  |
| 6 | 188/2 | 894 | 924 | 909 | 900.13 | 9.508 | 1.06 |
|  | 188/4 | 908 | 906 | 907 |  |  |  |
|  | 188/6 | 895 | 896 | 896 |  |  |  |
|  | 188/8 | 882 | 896 | 889 |  |  |  |
| 7 | 203/2 | 889 | 897 | 893 | 900.63 | 10.045 | 1.12 |
|  | 203/4 | 885 | 904 | 895 |  |  |  |
|  | 203/6 | 911 | 919 | 915 |  |  |  |
|  | 203/8 | 898 | 902 | 900 |  |  |  |
| 8 | 229/2 | 903 | 895 | 899 | 904.88 | 6.033 | 0.67 |
|  | 229/4 | 921 | 883 | 902 |  |  |  |
|  | 229/6 | 918 | 908 | 913 |  |  |  |
|  | 229/8 | 921 | 890 | 906 |  |  |  |

## Analyt: 0

| 9 | $286 / 2$ | 884 | 930 | 907 | 906.25 | 6.982 | 0.77 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $286 / 4$ | 905 | 912 | 909 |  |  |  |
|  | $286 / 6$ | 914 | 912 | 913 |  |  |  |
|  | $286 / 8$ | 894 | 899 | 897 |  |  |  |
| 10 | $294 / 2$ | 904 | 901 | 903 | 895.88 | 4.715 | 0.53 |
|  | $294 / 4$ | 890 | 898 | 894 |  |  |  |
|  | $294 / 6$ | 895 | 896 | 896 |  |  |  |
|  | $294 / 8$ | 899 | 884 | 892 |  |  |  |

$\mathrm{M}_{\mathrm{ss}}$ - mean of
sub-samples 1-4 904.49
SD of means of 904.49

SD of means of
the sub-samples
1-4 samples 6.297

RSD (rel. \%) 0.70
mean RSD $_{\text {w }}$
$\begin{array}{r}\text { (\%) } 0.92 \\ \hline\end{array}$

| Homogeneity between the samples |  |  |  |
| :---: | :---: | :---: | :---: |
| Analysis of variance: $\quad \mathrm{a}=0.05$ |  |  |  |
| standard deviation within the samples $\mathrm{s}_{\mathrm{w}}$ | 8.634 | $\begin{gathered} \mathrm{Mss}_{\mathrm{ss}} \\ 904.4900 \end{gathered}$ | $\begin{gathered} \text { RSD \% } \\ 0.70 \end{gathered}$ |
| standard deviation between the samples $\mathrm{S}_{\mathrm{b}}$ | 12.594 | $\mathrm{F}_{\text {value }}$ | 2.21 |
| test value $\mathrm{s}_{\mathrm{b}}{ }^{2} / \mathrm{s}_{\mathrm{w}}{ }^{2}$ | 2.128 | Characteristic no. for homogeneity between $\qquad$ | 0.963 |
| Homogeneity between the samples: No significant inhomogeneity |  |  |  |

Measurements, compilation of results: ESK, Ceramics GmbH \& Co.KG, Kempten; Germany
Final evaluation: BAM, Federal Institute for Materials and Testing (Division I.1)

## Analyt: N

mass fraction in mg/kg

| Serial number | Sample number | 1. measurement | 2. measurement | mean | mean of sub-samples 1-4 | SD of sub-samples 1-4 | RSD ${ }_{\text {w }}$ (rel.\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 008/2 | 51 | 46 | 48.5 | 56.375 | 7.532 | 13.36 |
|  | 008/4 | 57 | 56 | 56.5 |  |  |  |
|  | 008/6 | 54 | 54 | 54.0 |  |  |  |
|  | 008/8 | 88 | 45 | 66.5 |  |  |  |
| 2 | 056/2 | 49 | 60 | 54.5 | 51.625 | 3.966 | 7.68 |
|  | 056/4 | 49 | 49 | 49.0 |  |  |  |
|  | 056/6 | 40 | 55 | 47.5 |  |  |  |
|  | 056/8 | 49 | 62 | 55.5 |  |  |  |
| 3 | 076/2 | 44 | 50 | 47.0 | 49.750 | 5.838 | 11.73 |
|  | 076/4 | 48 | 46 | 47.0 |  |  |  |
|  | 076/6 | 71 | 46 | 58.5 |  |  |  |
|  | 076/8 | 39 | 54 | 46.5 |  |  |  |
| 4 | 128/2 | 59 | 56 | 57.5 | 55.250 | 3.969 | 7.18 |
|  | 128/4 | 51 | 49 | 50.0 |  |  |  |
|  | 128/6 | 68 | 50 | 59.0 |  |  |  |
|  | 128/8 | 51 | 58 | 54.5 |  |  |  |
| 5 | 143/2 | 47 | 45 | 46.0 | 45.750 | 6.410 | 14.01 |
|  | 143/4 | 39 | 40 | 39.5 |  |  |  |
|  | 143/6 | 47 | 62 | 54.5 |  |  |  |
|  | 143/8 | 40 | 46 | 43.0 |  |  |  |
| 6 | 188/2 | 45 | 53 | 49.0 | 47.625 | 3.794 | 7.97 |
|  | 188/4 | 44 | 51 | 47.5 |  |  |  |
|  | 188/6 | 44 | 59 | 51.5 |  |  |  |
|  | 188/8 | 42 | 43 | 42.5 |  |  |  |
| 7 | 203/2 | 54 | 42 | 48.0 | 53.750 | 5.752 | 10.70 |
|  | 203/4 | 45 | 66 | 55.5 |  |  |  |
|  | 203/6 | 79 | 43 | 61.0 |  |  |  |
|  | 203/8 | 41 | 60 | 50.5 |  |  |  |
| 8 | 229/2 | 42 | 53 | 47.5 | 56.375 | 7.075 | 12.55 |
|  | 229/4 | 82 | 46 | 64.0 |  |  |  |
|  | 229/6 | 52 | 57 | 54.5 |  |  |  |
|  | 229/8 | 71 | 48 | 59.5 |  |  |  |


| Analyt: N |
| :--- |
| 9 |


| $M_{\text {Ss }}-$ mean of means of <br> the sub-samples <br> $1-4$ 51.975 <br> SD of means of the <br> sub-samples 1-4  <br> RSD (rel.\%) 3.897 |
| :--- | :---: |


| Homogeneity between the samples |  |  |  |
| :---: | :---: | :---: | :---: |
| Analysis of variance: $a=0.05$ |  |  |  |
| standard deviation within the samples $\mathrm{s}_{\mathrm{w}}$ | 5.963 |  | RSD \% |
|  |  | 51.9750 | 7.50 |
| standard deviation between the samples $\mathrm{S}_{\mathrm{b}}$ | $7.795$ | $F_{\text {value }}$ | 2.21 |
| test value $\mathrm{s}_{\mathrm{b}}{ }^{2} / \mathrm{s}_{\mathrm{w}}{ }^{2}$ | 1.709 | Characteristic no. for homogeneity between the samples | 0.773 |
| Homogeneity between the samples: No significant inhomogeneity |  |  |  |

Measurements, compilation of results: ESK, Ceramics GmbH \& Co.KG, Kempten; Germany
Final evaluation: BAM, Federal Institute for Materials and Testing (Division I.1)
Analyt: $\mathrm{SiO}_{2}$ free
mass fraction in mg/kg

| Serial number | Sample number | 1. measurement | 2. measurement | mean | $\begin{array}{\|c\|} \hline \text { mean of sub-samples } \\ 1-4 \\ \hline \end{array}$ | $\begin{gathered} \text { SD of } \\ \text { sub-samples 1-4 } \\ \hline \end{gathered}$ | RSD ${ }_{\text {w }}$ (rel.\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | O/8/2 | 680 | 660 | 670 | 661.25 | 31.46 | 4.76 |
|  | O/8/4 | 680 | 670 | 675 |  |  |  |
|  | O/8/6 | 660 | 710 | 685 |  |  |  |
|  | 0/8/8 | 630 | 600 | 615 |  |  |  |
| 2 | O/56/2 | 680 | 660 | 670 | 647.50 | 21.02 | 3.25 |
|  | 0/56/4 | 640 | 630 | 635 |  |  |  |
|  | 0/56/6 | 640 | 680 | 660 |  |  |  |
|  | O/56/8 | 650 | 600 | 625 |  |  |  |
| 3 | O/76/2 | 690 | 670 | 680 | 666.25 | 13.15 | 1.97 |
|  | 0/76/4 | 660 | 650 | 655 |  |  |  |
|  | 0/76/6 | 660 | 690 | 675 |  |  |  |
|  | 0/76/8 | 680 | 630 | 655 |  |  |  |
| 4 | O/128/2 | 680 | 660 | 670 | 657.50 | 31.75 | 4.83 |
|  | O/128/4 | 690 | 660 | 675 |  |  |  |
|  | O/128/6 | 670 | 680 | 675 |  |  |  |
|  | O/128/8 | 620 | 600 | 610 |  |  |  |
| 5 | O/143/2 | 680 | 660 | 670 | 648.75 | 30.10 | 4.64 |
|  | O/143/4 | 670 | 610 | 640 |  |  |  |
|  | O/143/6 | 650 | 700 | 675 |  |  |  |
|  | O/143/8 | 630 | 590 | 610 |  |  |  |
| 6 | O/188/2 | 570 | 510 | 540 | 587.50 | 45.55 | 7.75 |
|  | O/188/4 | 630 | 570 | 600 |  |  |  |
|  | O/188/6 | 620 | 670 | 645 |  |  |  |
|  | O/188/8 | 590 | 540 | 565 |  |  |  |
| 7 | O/203/2 | 600 | 600 | 600 | 591.25 | 35.68 | 6.03 |
|  | O/203/4 | 600 | 560 | 580 |  |  |  |
|  | O/203/6 | 630 | 640 | 635 |  |  |  |
|  | O/203/8 | 560 | 540 | 550 |  |  |  |
| 8 | O/229/2 | 640 | 660 | 650 | 645.0000 | 13.54 | 2.10 |
|  | O/229/4 | 650 | 600 | 625 |  |  |  |
|  | O/229/6 | 620 | 690 | 655 |  |  |  |
|  | O/229/8 | 630 | 670 | 650 |  |  |  |

Analyt: $\mathbf{S i O}_{\text {2 tree }}$

| 9 | O/286/2 | 570 | 600 | 585 | 578.75 | 17.02 | 2.94 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | O/286/4 | 610 | 580 | 595 |  |  |  |
|  | O/286/6 | 560 | 600 | 580 |  |  |  |
|  | O/286/8 | 570 | 540 | 555 |  |  |  |
| 10 | O/294/2 | 590 | 580 | 585 | 590.00 | 20.41 | 3.46 |
|  | O/294/4 | 600 | 560 | 580 |  |  |  |
|  | O/294/6 | 620 | 620 | 620 |  |  |  |
|  | O/294/8 | 550 | 600 | 575 |  |  |  |

$M_{s_{s}}$ - mean of means
of the sub-samples 1
4
627.38

SD of means of the
sub-samples 1-4
RSD (rel.\%) 567

| Homogeneity between the samples |  |  |  |
| :---: | :---: | :---: | :---: |
| Analysis of variance: $\mathrm{a}=0.05$ |  |  |  |
| standard deviation within the samples $\mathrm{S}_{\mathrm{w}}$ | 27.85 | $\mathrm{M}_{\text {ss }}$ | RSD \% |
|  |  | 627.3800 | 5.67 |
| standard deviation between the samples Sb | $71.17$ | $F_{\text {value }}$ | 2.21 |
| test value $\mathrm{s}_{\mathrm{b}}{ }^{2} / \mathrm{s}_{\mathrm{w}}{ }^{2}$ | 6.530 | Characteristic for homogene between the sa | 2.955 |
| Homogeneity between the samples: Significant inhomogeneity |  |  |  |

## Appendix 6 for CRM BAM-S003

Compilation of sample preparation procedures, calibrations and methods for final determination used in interlaboratory comparison for certification of CRM BAM-S003

| Aluminium |  |  |  |
| :---: | :---: | :---: | :---: |
| Lab code | $\begin{aligned} & \text { Sample Preparation } \\ & \text { (M = mass of sub-samples) }\end{aligned}$ | Calibration | Final Determination |
| 4 | without sample preparation | Merck-Al-standard solution 1000 mg/L | ETV-ICP OES |
| 6 | M: 0.5 g Decomposition with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in Pt-crucible | Al-stock-solution $1000 \mathrm{mg} / \mathrm{L}$ | F AAS |
| 8 | M: 50 mg ; Decomposition with 1 g KOH at $400^{\circ} \mathrm{C}$ in a crucible of glassy carbon | Merck multi element stock solution $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 11 | M: 5.0 g ; Decomposition with $\mathrm{H}_{2} \mathrm{SO}_{4}$. HF. $\mathrm{HNO}_{3} \mathrm{HCl}$. described in ISO 9286. 1997. Part 3.5.4 | Titrisol $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 12 | $\mathrm{M}: 0.5 \mathrm{~g} \mathrm{HF}(70 \%)+\mathrm{HNO}_{3}$ (100\%) 24 h by $220^{\circ} \mathrm{C}$ pressure digestion system $\rightarrow$ 50 ml flask | Merck: Al stock solution $1 \mathrm{~g} / \mathrm{L}$ | ICP OES |
| 14 | M: 0.5 g ; dissolve in $\mathrm{HNO}_{3} / \mathrm{HCl}$. filtering; $\rightarrow$ 250 ml flask | Merck: standard solution $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 16 | $\mathrm{M}: 0.1 \mathrm{~g}$; sample mixed with $1 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}$ and $1 \mathrm{~g} \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$, heat with a gas burner for 6075 min , leach out with water, add 10 ml HCl $\rightarrow$ dilute to 100 ml | Al-metal $1000 \mathrm{mg} / \mathrm{L}$ in $5 \% \mathrm{HCl}$ calibration: 0-2-5 mg/L matrix matching: $\mathrm{HCl}, \mathrm{Na}_{2} \mathrm{CO}_{3}$ and $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$, were added. | ICP OES |
| 18 | M: 0.2 g ; Decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel | Spex standard solution | ICP OES |
| 19 | $\begin{aligned} & \mathrm{M}: 0.25 \mathrm{~g} ; \mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4} . \mathrm{HP} 250^{\circ} \mathrm{C} 18 \mathrm{~h} \\ & \rightarrow 50 \mathrm{ml} \text { flask } \end{aligned}$ | Al metal; digestion reagent HCl | ICP OES |
| 20 | $\mathrm{M}: 0.1 \mathrm{~g}$ Micro wave decomposition with HF- $\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4} .260^{\circ} \mathrm{C}$ | Al metal (5N); digestion reagent $\mathrm{H}_{2} \mathrm{SO}_{4}$ | ICP OES |
| 22 | $\mathrm{M}: 0.25 \mathrm{~g}$; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel $\left(16 \mathrm{~h}-250^{\circ} \mathrm{C}\right) \rightarrow 50 \mathrm{ml}$ flask | Merck $1 \mathrm{~g} / \mathrm{L}$ checked with self prepared standard and ICP-IV Merck standard | ICP OES |
| 23 | M: 0.25 g ; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel ( $16 \mathrm{~h}-250^{\circ} \mathrm{C}$ ) $\rightarrow 50 \mathrm{ml}$ flask | Al metal (5N J\&M) digestion reagent HCl | ET AAS |
| 24 | $\mathrm{M}: 0.25 \mathrm{~g}$; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel $\left(16 \mathrm{~h}-250^{\circ} \mathrm{C}\right) \rightarrow 50 \mathrm{ml}$ flask | SRM 3101a/ NIST checked with Merck $1000 \mathrm{mg} / \mathrm{L} \mathrm{Al}$ | ICP-MS |
| 25 | M: 0.005 g sample mixing; without sample preparation | $\mathrm{Al}_{2} \mathrm{O}_{3}$ Merck addition method: pure $\mathrm{SiC}+$ addition $\mathrm{Al}_{2} \mathrm{O}_{3}$ | DCarc-OES |
| 26 | M: 0.5 g ; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel (12h- $250^{\circ} \mathrm{C}$ ) | standard solution: <br> a) Merck $1000 \mathrm{mg} / \mathrm{L}$ <br> b) Fluka $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 27 | $\mathrm{M}: 0.1 \mathrm{~g}$; melting with $\mathrm{Li}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}\left(1100^{\circ} \mathrm{C} 1 \mathrm{~h}\right)$ dissolve in $\mathrm{HCl} \rightarrow 250 \mathrm{ml}$ flask | Merck CERTIPUR $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 28 | M: 0.25 g ; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel $\left(12 \mathrm{~h}-240^{\circ} \mathrm{C}\right) \rightarrow 25 \mathrm{ml}$ flask | Merck CERTIPUR $1000 \mathrm{mg} / \mathrm{L}$; Baker Atomic absorption standard $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 31 | $\mathrm{M}: 0.5 \mathrm{~g} ; \mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 230^{\circ} \mathrm{C} 16 \mathrm{~h} \rightarrow$ dryness $\rightarrow$ dissolve (HCl) $\rightarrow 100 \mathrm{ml}$ flask | JCSS - Kanto Co. 1004 mg/L | ICP OES |
| 33 | $\mathrm{M}: 0.5 \mathrm{~g}$; SiC in Pt-crucible with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$. then pressure decomposition $-250^{\circ} \mathrm{C} .72 \mathrm{~h} \rightarrow$ evaporate the $\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$ dissolve in $\mathrm{HCl} \rightarrow 100 \mathrm{ml}$ flask | standard solution: <br> a) Aldrich. Wako $1000 \mathrm{mg} / \mathrm{L}$ <br> b) Spex $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 36 | M: 0.5 g ; pressure decomposition with $\mathrm{HF}(73 \%)-\mathrm{HNO}_{3}(100 \%)$ DAB-II $250^{\circ} \mathrm{C}$, 8 h | Kraft $1 \mathrm{~g} / \mathrm{L} \mathrm{Al}$ | ICP OES |
|  | $\mathrm{M}: 0.08 \mathrm{~g}$; pressing in graphite electrode | synthetic mixed oxide | DCarc OES |

Compilation of sample preparation procedures, calibrations and methods for final determination used in interlaboratory comparison for certification of CRM BAM-S003

| Boron |  |  |  |
| :---: | :---: | :---: | :---: |
| Lab code | Sample Preparation ( $M=$ mass of sub-samples) | Calibration | Final Determination |
| 8 | M: 50 mg ; Decomposition with 1 g KOH at $400^{\circ} \mathrm{C}$ in a crucible of glassy carbon | Merck multi element stock solution $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 12 | M: $0.5 \mathrm{~g} \mathrm{HF}(70 \%)+\mathrm{HNO}_{3}$ (100\%) <br> 24 h by $220^{\circ} \mathrm{C}$ pressure digestion system $\rightarrow$ <br> 50 ml flask | Merck: B stock solution $1 \mathrm{~g} / \mathrm{L}$ | ICP OES |
| 14 | M: 0.5 g ; dissolve in $\mathrm{HNO}_{3} / \mathrm{HCl}$. filtering; $\rightarrow$ 250 ml flask | Merck: standard solution $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 18 | SW 0.2 g; Decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel | Spex standard solution | ICP OES |
| 19 | $\mathrm{M}: 0.25 \mathrm{~g} ; \mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4} . \mathrm{HP} 250^{\circ} \mathrm{C} 18 \mathrm{~h}$ $\rightarrow 50 \mathrm{ml}$ flask | $\mathrm{H}_{3} \mathrm{BO}_{3}$. digestion reagent water | ICP OES |
| 22 | $\mathrm{M}: 0.25 \mathrm{~g}$; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel $\left(16 \mathrm{~h}-250^{\circ} \mathrm{C}\right) \rightarrow 50 \mathrm{ml}$ flask | Merck $1 \mathrm{~g} / \mathrm{L}$ checked with self prepared standard and ICP-IV Merck standard | ICP OES |
| 25 | M: 0.005 g sample mixing; without sample preparation | B powder Merck addition method: pure $\mathrm{SiC}+$ addition B | DCarc-OES |
| 26 | decomposition with $\mathrm{NaKCO}_{3}$ in Pt-crucible | standard solution: <br> a) Merck $1000 \mathrm{mg} / \mathrm{L}$ <br> b) Fluka $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 31 | M: $0.5 \mathrm{~g} ; \mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow 250^{\circ} \mathrm{C}$ $16 \mathrm{~h} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$ fume $\rightarrow$ 100 ml flask | JCSS - Kanto Co. $1007 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 33 | $\mathrm{M}: 0.125 \mathrm{~g}$; fusion decomposition in Pt-vessel with $\mathrm{Na}_{2} \mathrm{CO}_{3}$. then evaporate with $\mathrm{HCl} \rightarrow$ Filtration $\rightarrow 100 \mathrm{ml}$ flask $\rightarrow$ with precipitate fusion decomposition rerun | standard solution: <br> a) Aldrich. Wako $1000 \mathrm{mg} / \mathrm{L}$ <br> b) Spex $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 36 | $\mathrm{M}: 0.5 \mathrm{~g}$; pressure decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ | Kraft $1 \mathrm{~g} / \mathrm{L}$ B | ICP OES (a) |
|  | M: 1 g ; fusion decomposition in Zr -crucible with $2.5 \mathrm{~g} \mathrm{NaKCO}_{3}$ and $/ .5 \mathrm{~g} \mathrm{Na}_{2} \mathrm{O}_{2}$. Transferred into 100 ml flask. Aliquot of 25 ml has been used to separate $\mathrm{BF}_{4}$-complex. (J.W. Maeck et.al. Anal. Chem. 35. (1963). 62-65) | Kraft $1 \mathrm{~g} / \mathrm{L}$ B | ICP OES (d) |
|  | M : 1 g ; fusion decomposition in Zr -crucible with $2.5 \mathrm{~g} \mathrm{NaKCO}_{3}$ and $/ .5 \mathrm{~g} \mathrm{Na}_{2} \mathrm{O}_{2}$. <br> Transferred into 200 ml calibrated flask. | Kraft $1 \mathrm{~g} / \mathrm{L}$ B close matrix matching with $\mathrm{NaCO}_{3} / \mathrm{K}_{2} \mathrm{CO}_{3}$ | ICP OES (e) |
|  | M: 1 g ; sample +10 g NaKCO 3 in Pt-crucible leach out. Transferred into 100 ml plastic flask. <br> (U. de la Chevallierie-Haaf et.al. Fres. Z. Anal. Chem. (1986) 323:266-270 | no information | MAS |

Compilation of sample preparation procedures, calibrations and methods for final determination used in interlaboratory comparison for certification of CRM BAM-S003

| Calcium |  |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{array}{\|l\|} \hline \text { Lab } \\ \text { code } \\ \hline \end{array}$ | Sample Preparation ( $\mathbf{M}$ = mass of sub-samples) | Calibration | Final Determination |
| 4 | without sample preparation | Merck-Ca-standard solution $1000 \mathrm{mg} / \mathrm{L}$ |  |
| 6 | M: 0.5 g ; Decomposition with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in Pt-crucible | Ca-stock-solution $1000 \mathrm{mg} / \mathrm{L}$ | F AAS |
| 8 | M: 50 mg ; Decomposition with 1 g KOH at $400^{\circ} \mathrm{C}$ in a crucible of glassy carbon | Merck multi element stock solution $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 11 | M: 5.0 g ; Decomposition with $\mathrm{H}_{2} \mathrm{SO}_{4}$. HF . $\mathrm{HNO}_{3} \mathrm{HCl}$. described in ISO 9286. 1997. Part 3.5.4 | Titrisol $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 12 | M: $0.5 \mathrm{~g} \mathrm{HF}(70 \%)+\mathrm{HNO}_{3}(100 \%)$ <br> 24 h by $220^{\circ} \mathrm{C}$ pressure digestion system $\rightarrow$ <br> 50 ml flask | Merck: Ca stock solution $1 \mathrm{~g} / \mathrm{L}$ | ICP OES |
| 14 | M: 0.5 g ; dissolve in $\mathrm{HNO}_{3} / \mathrm{HCl}$. filtering; $\rightarrow$ 250 ml flask | Merck: standard solution $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 18 | M: 0.2 g ; Decomposition with HF- $\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel | Spex high purity $10 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 19 | $\mathrm{M}: 0.25 \mathrm{~g} ; \mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4} . \mathrm{HP} 250^{\circ} \mathrm{C} 18 \mathrm{~h}$ $\rightarrow 50 \mathrm{ml}$ flask | CaO . digestion reagent $\mathrm{HNO}_{3}$ | ICP OES |
| 20 | M: 0.1 g Micro wave decomposition with HF- $\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4} 260^{\circ} \mathrm{C}$ | source $\mathrm{CaCO}_{3}$. digestion reagent HCl | ICP OES |
| 22 | M: 0.25 g ; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel $\left(16 \mathrm{~h}-250^{\circ} \mathrm{C}\right) \rightarrow 50 \mathrm{ml}$ flask | Merck $1 \mathrm{~g} / \mathrm{L}$ checked with self prepared standard and ICP-IV Merck standard | ICP OES |
| 23 | M: 0.25 g ; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel $\left(16 \mathrm{~h}-250^{\circ} \mathrm{C}\right) \rightarrow 50 \mathrm{ml}$ flask | $\mathrm{CaCO}_{3}(5 \mathrm{NJ} \mathrm{\& M})$ digestion reagent $\mathrm{HNO}_{3}$ | F AAS |
| 24 | $\mathrm{M}: 0.25 \mathrm{~g}$; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}{ }^{-}$ $\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel (16h$250^{\circ} \mathrm{C}$ ) $\rightarrow 50 \mathrm{ml}$ flask | SRM 3109a. NIST checked with Merck $1000 \mathrm{mg} / \mathrm{L} \mathrm{Ca}$ | ICP-MS |
| 26 | M: 0.5 g ; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel ( $12 \mathrm{~h}-250^{\circ} \mathrm{C}$ ) | standard solution: <br> a) Merck $1000 \mathrm{mg} / \mathrm{L}$ <br> b) Fluka $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 27 | M: 0.1 g ; melting with $\mathrm{Li}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}\left(1100^{\circ} \mathrm{C} 1 \mathrm{~h}\right)$ dissolve in $\mathrm{HCl} \rightarrow 250 \mathrm{ml}$ flask | Merck CERTIPUR $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 28 | M: 0.25 g ; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel $\left(12 \mathrm{~h}-240^{\circ} \mathrm{C}\right) \rightarrow 25 \mathrm{ml}$ flask | Merck CERTIPUR $1000 \mathrm{mg} / \mathrm{L}$; <br> Baker Atomic absorption standard $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 31 | $\mathrm{M}: 0.5 \mathrm{~g} ; \mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 230^{\circ} \mathrm{C} 16 \mathrm{~h} \rightarrow$ dryness $\rightarrow$ dissolve (HCl) $\rightarrow 100 \mathrm{ml}$ flask | JCSS - Kanto Co. 1007 mg/L | ICP OES |
| 33 | $\mathrm{M}: 0.5 \mathrm{~g}$; SiC in Pt-crucible with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$. then pressure decomposition $-250^{\circ} \mathrm{C}$. $72 \mathrm{~h} \rightarrow$ evaporate the $\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$ dissolve in $\mathrm{HCl} \rightarrow 100 \mathrm{ml}$ flask | standard solution: <br> a) Aldrich. Wako $1000 \mathrm{mg} / \mathrm{L}$ <br> b) Spex $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 36 | $\mathrm{M}: 0.5 \mathrm{~g}$; pressure decomposition with HF ( $73 \%$ ) $-\mathrm{HNO}_{3}(100 \%)$ DAB-II $250^{\circ} \mathrm{C}, 8 \mathrm{~h}$ | Kraft $1 \mathrm{~g} / \mathrm{LCa}$ | ICP OES |
|  | $\mathrm{M}: 0.08 \mathrm{~g}$; pressing in graphite electrode | synthetic mixed oxide | DCarc OES |

Compilation of sample preparation procedures, calibrations and methods for final determination used in interlaboratory comparison for certification of CRM BAM-S003

| Chromium |  |  |  |
| :---: | :---: | :---: | :---: |
| Lab code | Sample Preparation ( $\mathbf{M}=$ mass of sub-samples) | Calibration | Final Determination |
| 1 | $\mathrm{M}: 0.5 \mathrm{~g}$; no sample digestion | $\mathrm{K}_{2} \mathrm{CrO}_{4}$ | INAA |
| 2 | no sample digestion |  | $\mathrm{K}_{0}$-INAA |
| 4 | without sample preparation | Merck-Cr-standard solution $1000 \mathrm{mg} / \mathrm{L}$ | ETV-ICP OES |
| 8 | M: 50 mg ; Decomposition with 1 g KOH at $400^{\circ} \mathrm{C}$ in a crucible of glassy carbon | Merck multi element stock solution $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 11 | M: 5.0 g ; Decomposition with $\mathrm{H}_{2} \mathrm{SO}_{4}$. $\mathrm{HF} . \mathrm{HNO}_{3} \mathrm{HCl}$. described in ISO 9286. 1997. Part 3.5.4 | Titrisol $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 13 | $\mathrm{M}: 0.25 \mathrm{~g}$; Micro wave decomposition with $\mathrm{HCl}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ | Merck standard solution 1000 mg/L | ET AAS |
| 14 | M: 0.5 g ; dissolve in $\mathrm{HNO}_{3} / \mathrm{HCl}$. filtering; $\rightarrow$ 250 ml flask | Merck: standard solution $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 16 | $\mathrm{M}: 0.1 \mathrm{~g}$; sample mixed with $1 \mathrm{~g} \mathrm{Na} \mathrm{CO}_{3}$ and $1 \mathrm{~g} \mathrm{Na} 2 \mathrm{~B}_{4} \mathrm{O}_{7}$, heat with a gas burner for 6075 min , leach out with water, add 10 ml HCl $\rightarrow$ dilute to 100 ml | Bought from the reference material and calibration solution provider. <br> calibration: 0-2-5 mg/L matrix matching: $\mathrm{HCl}, \mathrm{Na}_{2} \mathrm{CO}_{3}$ and $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$, were added. | ICP OES |
| 19 | $\mathrm{M}: 0.25 \mathrm{~g} ; \mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$. HP $250^{\circ} \mathrm{C} 18 \mathrm{~h} \rightarrow 50 \mathrm{ml}$ flask | Cr digestion reagent water | ICP OES |
| 20 | $\mathrm{M}: 0.1 \mathrm{~g}$ Micro wave decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4} 260^{\circ} \mathrm{C}$ | Cr metal (4N) digestion reagent $\mathrm{HNO}_{3}$ | ICP OES |
| 23 | M: 0.25 g ; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel $\left(16 \mathrm{~h}-250^{\circ} \mathrm{C}\right) \rightarrow 50 \mathrm{ml}$ flask | Cr metal (99.995\% J\&M) digestion reagent HCl | ET AAS |
| 24 | $\mathrm{M}: 0.25 \mathrm{~g}$; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel $\left(16 \mathrm{~h}-250^{\circ} \mathrm{C}\right) \rightarrow 50 \mathrm{ml}$ flask | SRM 3112a. NIST checked with Merck 1000 mg/L Cr | ICP-MS |
| 25 | M: 0.005 g sample mixing; without sample preparation; (not results delivered) | $\mathrm{Cr}_{2} \mathrm{O}_{3}$ Merck addition method: pure $\mathrm{SiC}+$ addition $\mathrm{Cr}_{2} \mathrm{O}_{3}$ | DCarc-OES |
| 26 | M: 0.5 g ; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel ( $12 \mathrm{~h}-250^{\circ} \mathrm{C}$ ) | standard solution: <br> a) Merck $1000 \mathrm{mg} / \mathrm{L}$ <br> b) Fluka $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 28 | $\mathrm{M}: 0.25 \mathrm{~g}$; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel $\left(12 \mathrm{~h}-240^{\circ} \mathrm{C}\right) \rightarrow 25 \mathrm{ml}$ flask | Merck CERTIPUR $1000 \mathrm{mg} / \mathrm{L}$; Baker Atomic absorption standard $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 31 | $\mathrm{M}: 0.5 \mathrm{~g} ; \mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 230^{\circ} \mathrm{C} 16 \mathrm{~h} \rightarrow$ dryness $\rightarrow$ dissolve (HCl) $\rightarrow 100 \mathrm{ml}$ flask | JCSS - Wako Co. $100.3 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 33 | $\mathrm{M}: 0.5 \mathrm{~g}$; SiC in Pt-crucible with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$. then pressure decomposition $-250^{\circ} \mathrm{C}$. $72 \mathrm{~h} \rightarrow$ evaporate the $\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$ dissolve in $\mathrm{HCl} \rightarrow 100 \mathrm{ml}$ flask | standard solution: <br> a) Aldrich. Wako $1000 \mathrm{mg} / \mathrm{L}$ <br> b) Spex $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 35 | $\mathrm{M}: 0.08-0.11 \mathrm{~g}$; no sample digestion | Cr-metal 4N8 | INAA |
| 36 | M: 0.5 g ; pressure decomposition with HF ( $73 \%$ ) - $\mathrm{HNO}_{3}$ ( $100 \%$ ) DAB-II $250^{\circ} \mathrm{C}$, 8 h | Kraft $1 \mathrm{~g} / \mathrm{L}$ | ICP OES |
|  | $\mathrm{M}: 0.08 \mathrm{~g}$; pressing in graphite electrode | synthetic mixed oxide | DCarc OES |

Compilation of sample preparation procedures, calibrations and methods for final determination used in interlaboratory comparison for certification of CRM BAM-S003

| Copper |  |  |  |
| :---: | :---: | :---: | :---: |
| Lab code | Sample Preparation ( M = mass of sub-samples) | Calibration | Final Determination |
| 4 | without sample preparation | Merck-Cu-standard solution $1000 \mathrm{mg} / \mathrm{L}$ | ETV-ICP OES |
| 8 | M: 50 mg ; Decomposition with 1 g KOH at $400^{\circ} \mathrm{C}$ in a crucible of glassy carbon | Merck multi element stock solution $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 11 | M: 5.0 g ; Decomposition with $\mathrm{H}_{2} \mathrm{SO}_{4}$. $\mathrm{HF} . \mathrm{HNO}_{3} \mathrm{HCl}$. described in ISO 9286. 1997. Part 3.5.4 | Titrisol $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 12 | M: $0.5 \mathrm{~g} \mathrm{HF}(70 \%)+\mathrm{HNO}_{3}(100 \%)$ 24 h by $220^{\circ} \mathrm{C}$ pressure digestion system $\rightarrow$ 50 ml flask | Merck: Cu stock solution $1 \mathrm{~g} / \mathrm{L}$ | ICP OES |
| 14 | $\mathrm{M}: 0.5 \mathrm{~g}$; dissolve in $\mathrm{HNO}_{3} / \mathrm{HCl}$. filtering; $\rightarrow$ 250 ml flask | Merck: standard solution $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 19 | M: $0.25 \mathrm{~g} ; \mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$. $\mathrm{HP} 250^{\circ} \mathrm{C} 18 \mathrm{~h}$ $\rightarrow 50 \mathrm{ml}$ flask | Cu metal; digestion reagent $\mathrm{HNO}_{3}$ | ICP OES |
| 22 | M: 0.25 g ; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel $\left(16 \mathrm{~h}-250^{\circ} \mathrm{C}\right) \rightarrow 50 \mathrm{ml}$ flask | Merck $1 \mathrm{~g} / \mathrm{L}$ checked with self prepared standard and ICP-IV Merck standard | ICP OES |
| 23 | M: 0.25 g ; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel $\left(16 \mathrm{~h}-250^{\circ} \mathrm{C}\right) \rightarrow 50 \mathrm{ml}$ flask | Cu metal ( 6 N J\&M) digestion reagent $\mathrm{HNO}_{3}$ | ET AAS |
| 24 | M: 0.25 g ; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel $\left(16 \mathrm{~h}-250^{\circ} \mathrm{C}\right) \rightarrow 50 \mathrm{ml}$ flask | BAM A- Primary Cu 1 metal checked with Merck $1000 \mathrm{mg} / \mathrm{L} \mathrm{Cu}$ | ICP-MS |
| 26 | M: 0.5 g ; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel $\left(12 \mathrm{~h}-250^{\circ} \mathrm{C}\right)$ | standard solution: <br> a) Merck $1000 \mathrm{mg} / \mathrm{L}$ <br> b) Fluka $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 28 | M: 0.25 g ; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel $\left(12 \mathrm{~h}-240^{\circ} \mathrm{C}\right) \rightarrow 25 \mathrm{ml}$ flask | Merck CERTIPUR $1000 \mathrm{mg} / \mathrm{L}$; Baker Atomic absorption standard $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 31 | $\mathrm{M}: 0.5 \mathrm{~g} ; \mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 230^{\circ} \mathrm{C} 16 \mathrm{~h} \rightarrow$ dryness $\rightarrow$ dissolve $(\mathrm{HCl}) \rightarrow 100 \mathrm{ml}$ flask | JCSS - Kanto Co. 100.0 mg/L | ICP OES |
| 33 | $\mathrm{M}: 0.5 \mathrm{~g}$; SiC in Pt-crucible with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$. then pressure decomposition $-250^{\circ} \mathrm{C}$. $72 \mathrm{~h} \rightarrow$ evaporate the $\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$ dissolve in $\mathrm{HCl} \rightarrow 100 \mathrm{ml}$ flask | standard solution: <br> a) Aldrich. Wako $1000 \mathrm{mg} / \mathrm{L}$ <br> b) Spex $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 36 | $\mathrm{M}: 0.5 \mathrm{~g}$; pressure decomposition with HF ( $73 \%$ ) $-\mathrm{HNO}_{3}\left(100 \%\right.$ ) DAB-II $250^{\circ} \mathrm{C}, 8 \mathrm{~h}$ | Kraft $1 \mathrm{~g} / \mathrm{LCu}$ | ICP OES |
|  | $\mathrm{M}: 0.08 \mathrm{~g}$; pressing in graphite electrode | synthetic mixed oxide | DCarc OES |

Compilation of sample preparation procedures, calibrations and methods for final determination used in interlaboratory comparison for certification of CRM BAM-S003

| Iron |  |  |  |
| :---: | :---: | :---: | :---: |
| Lab code | Sample Preparation ( $\mathrm{M}=$ mass of sub-samples) | Calibration | Final Determination |
| 1 | $\mathrm{M}: 0.5 \mathrm{~g}$; no sample digestion | $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ | INAA |
| 2 | no sample digestion |  | $\mathrm{K}_{0}$-INAA |
| 4 | without sample preparation | Merck-Fe-standard solution $1000 \mathrm{mg} / \mathrm{L}$ | ETV-ICP OES |
| 6 | $\mathrm{M}: 0.5 \mathrm{~g}$; Decomposition with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in Pt-crucible. Titration with $\mathrm{TiCl}_{3}$ | $1 \mathrm{mg} \mathrm{Fe} 2 \mathrm{O}_{3}$. Titration with $\mathrm{TiCl}_{3}$ | Titrimetry |
| 8 | M: 50 mg ; fused with Lithium borate (Spektromelt) in a platinum crucible. | Merck. multielement stock solution $1000 \mathrm{mg} / \mathrm{l}$ | ICP OES |
| 11 | M: 5.0 g ; Decomposition with $\mathrm{H}_{2} \mathrm{SO}_{4}$. HF. $\mathrm{HNO}_{3} \mathrm{HCl}$. described in ISO 9286. 1997. Part 3.5.4 | Titrisol $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 12 | $\mathrm{M}: 0.5 \mathrm{~g} \mathrm{HF}(70 \%)+\mathrm{HNO}_{3}(100 \%)$ 24 h by $220^{\circ} \mathrm{C}$ pressure digestion system $\rightarrow$ 50 ml flask | Merck: Fe stock solution $1 \mathrm{~g} / \mathrm{L}$ | ICP OES |
| 13 | $\mathrm{M}: 0.25 \mathrm{~g}$; Micro wave decomposition with $\mathrm{HCl}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ | Merck standard solution $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 14 | M: 0.5 g ; dissolve in $\mathrm{HNO}_{3} / \mathrm{HCl}$. filtering; $\rightarrow$ 250 ml flask | Merck: standard solution $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 16 | $\mathrm{M}: 0.1 \mathrm{~g}$; sample mixed with $1 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}$ and $1 \mathrm{~g} \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$, heat with a gas burner for 6075 min , leach out with water, add 10 ml HCl $\rightarrow$ dilute to 100 ml | Fe-metal $1000 \mathrm{mg} / \mathrm{L}$ in $5 \% \mathrm{HCl}$ calibration: 0-2-5 mg/L matrix matching: $\mathrm{HCl}, \mathrm{Na}_{2} \mathrm{CO}_{3}$ and $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$, were added. | ICP OES |
| 18 | M: 0.2 g ; Decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel | Spex high purity $10 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 19 | $\mathrm{M}: 0.25 \mathrm{~g} ; \mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$. HP $250^{\circ} \mathrm{C} 18 \mathrm{~h}$ $\rightarrow 50 \mathrm{ml}$ flask | Fe metal digestion reagent $\mathrm{HNO}_{3}$ | ICP OES |
| 20 | M: 0.1 g Micro wave decomposition with HF- $\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4} .260^{\circ} \mathrm{C}$ | Fe metal (99.9985\%. J\&M). digestion reagent $\mathrm{HNO}_{3}$ | ICP OES |
| 22 | $\mathrm{M}: 0.25 \mathrm{~g}$; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel $\left(16 \mathrm{~h}-250^{\circ} \mathrm{C}\right) \rightarrow 50 \mathrm{ml}$ flask | Merck $1 \mathrm{~g} / \mathrm{L}$ checked with self prepared standard and ICP-IV Merck standard | ICP OES |
| 23 | $\mathrm{M}: 0.25 \mathrm{~g}$; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel ( $16 \mathrm{~h}-250^{\circ} \mathrm{C}$ ) $\rightarrow 50 \mathrm{ml}$ flask | Fe metal (3N J\&M) digestion reagent $\mathrm{HNO}_{3} / \mathrm{HCl}$ | F AAS |
| 24 | M: 0.25 g ; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel $\left(16 \mathrm{~h}-250^{\circ} \mathrm{C}\right) \rightarrow 50 \mathrm{ml}$ flask | SRM 3126a. NIST checked with BAM A-Primary Fe | ICP-MS |
| 25 | M: 0.005 g sample mixing; without sample preparation | $\mathrm{Fe}_{2} \mathrm{O}_{3}$ powder Merck addition method: pure $\mathrm{SiC}+$ addition $\mathrm{Fe}_{2} \mathrm{O}_{3}$ | DCarc-OES |
| 26 | M: 0.5 g ; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel ( $12 \mathrm{~h}-250^{\circ} \mathrm{C}$ ) | standard solution: <br> a) Merck $1000 \mathrm{mg} / \mathrm{L}$ <br> b) Fluka $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 27 | M: 0.1 g ; melting with $\mathrm{Li}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}\left(1100^{\circ} \mathrm{C} 1 \mathrm{~h}\right)$ dissolve in $\mathrm{HCl} \rightarrow 250 \mathrm{ml}$ flask | Merck CERTIPUR $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 28 | $\mathrm{M}: 0.25 \mathrm{~g}$; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel $\left(12 \mathrm{~h}-240^{\circ} \mathrm{C}\right) \rightarrow 25 \mathrm{ml}$ flask | Merck CERTIPUR $1000 \mathrm{mg} / \mathrm{L}$; Baker Atomic absorption standard $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 31 | $\mathrm{M}: 0.5 \mathrm{~g} ; \mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 230^{\circ} \mathrm{C} 16 \mathrm{~h} \rightarrow$ dryness $\rightarrow$ dissolve ( HCl ) $\rightarrow 100 \mathrm{ml}$ flask | JCSS - Kanto Co. $1.003 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 33 | $\mathrm{M}: 0.5 \mathrm{~g}$; SiC in Pt-crucible with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$. then pressure decomposition $-250^{\circ} \mathrm{C}$. $72 \mathrm{~h} \rightarrow$ evaporate the $\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$ dissolve in $\mathrm{HCl} \rightarrow 100 \mathrm{ml}$ flask | standard solution: <br> a) Aldrich. Wako $1000 \mathrm{mg} / \mathrm{L}$ <br> b) Spex $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 36 | $\mathrm{M}: 0.5 \mathrm{~g}$; pressure decomposition with $\mathrm{HF}(73 \%)-\mathrm{HNO}_{3}(100 \%)$ DAB-II $250^{\circ} \mathrm{C}$, 8 h | Kraft $1 \mathrm{~g} / \mathrm{L} \mathrm{Fe}$ | ICP OES |
|  | $\mathrm{M}: 0.08 \mathrm{~g}$; pressing in graphite electrode | synthetic mixed oxide | DCarc OES |

Compilation of sample preparation procedures, calibrations and methods for final determination used in interlaboratory comparison for certification of CRM BAM-S003

| Magnesium |  |  |  |
| :---: | :---: | :---: | :---: |
| Lab code | Sample Preparation ( $\mathbf{M}=$ mass of sub-samples) | Calibration | Final Determination |
| 4 | without sample preparation | Merck-Mg-standard solution 1000 mg/L | ETV-ICP OES |
| 6 | M: 0.5 g ; Decomposition with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in Pt-crucible | Mg-stock-solution $1000 \mathrm{mg} / \mathrm{L}$ | F AAS |
| 8 | M: 50 mg ; Decomposition with 1 g KOH at $400^{\circ} \mathrm{C}$ in a crucible of glassy carbon | Merck multi element stock solution $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 11 | M: 5.0 g ; Decomposition with $\mathrm{H}_{2} \mathrm{SO}_{4} . \mathrm{HF} . \mathrm{HNO}_{3} \mathrm{HCl}$. described in ISO 9286. 1997. Part 3.5.4 | Titrisol $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 12 | $\mathrm{M}: 0.5 \mathrm{~g} \mathrm{HF}(70 \%)+\mathrm{HNO}_{3}(100 \%)$ 24 h by $220^{\circ} \mathrm{C}$ pressure digestion system $\rightarrow$ 50 ml flask | Merck: Mg stock solution $1 \mathrm{~g} / \mathrm{L}$ | ICP OES |
| 13 | $\mathrm{M}: 0.25 \mathrm{~g}$; Micro wave decomposition with $\mathrm{HCl}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ | Merck standard solution 1000 mg/L | ICP OES |
| 14 | M: 0.5 g ; dissolve in $\mathrm{HNO}_{3} / \mathrm{HCl}$. filtering; $\rightarrow$ 250 ml flask | Merck: standard solution $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 18 | $\mathrm{M}: 0.2 \mathrm{~g}$; Decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel | Spex high purity $10 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 19 | $\mathrm{M}: 0.25 \mathrm{~g} ; \mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$. $\mathrm{HP} 250^{\circ} \mathrm{C} 18 \mathrm{~h}$ $\rightarrow 50 \mathrm{ml}$ flask | MgO . digestion reagent $\mathrm{HNO}_{3}$ | ICP OES |
| 20 | $\mathrm{M}: 0.1 \mathrm{~g}$ Micro wave decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4} 260^{\circ} \mathrm{C}$ | Mg metal (99.95\%. J\&M). digestion reagent $\mathrm{HNO}_{3}$ | ICP OES |
| 22 | M: 0.25 g ; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel $\left(16 \mathrm{~h}-250^{\circ} \mathrm{C}\right) \rightarrow 50 \mathrm{ml}$ flask | Merck $1 \mathrm{~g} / \mathrm{L}$ checked with self prepared standard and ICP-IV Merck standard | ICP OES |
| 23 | M: 0.25 g ; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel $\left(16 \mathrm{~h}-250^{\circ} \mathrm{C}\right) \rightarrow 50 \mathrm{ml}$ flask | Mg metal (m3N8 J\&M) digestion reagent HCl | ET AAS |
| 24 | M: 0.25 g ; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel $\left(16 \mathrm{~h}-250^{\circ} \mathrm{C}\right) \rightarrow 50 \mathrm{ml}$ flask | SRM 3131a. NIST checked with Alfa JM $1000 \mathrm{mg} / \mathrm{L} \mathrm{Mg}$ | ICP-MS |
| 25 | M: 0.005 g sample mixing; without sample preparation (not results delivered) | MgO powder Merck addition method: pure $\mathrm{SiC}+$ addition MgO | DCarc-OES |
| 26 | M: 0.5 g ; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel (12h-250 ${ }^{\circ} \mathrm{C}$ ) | standard solution: <br> a) Merck $1000 \mathrm{mg} / \mathrm{L}$ <br> b) Fluka $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 28 | M: 0.25 g ; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel $\left(12 \mathrm{~h}-240^{\circ} \mathrm{C}\right) \rightarrow 25 \mathrm{ml}$ flask | Merck CERTIPUR $1000 \mathrm{mg} / \mathrm{L}$; Baker Atomic absorption standard $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 31 | $\mathrm{M}: 0.5 \mathrm{~g} ; \mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 230^{\circ} \mathrm{C} 16 \mathrm{~h} \rightarrow$ dryness $\rightarrow$ dissolve $(\mathrm{HCl}) \rightarrow 100 \mathrm{ml}$ flask | JCSS - Kanto Co. $1.008 \mathrm{~g} / \mathrm{L}$ | ICP OES |
| 33 | $\mathrm{M}: 0.5 \mathrm{~g}$; SiC in Pt-crucible with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$. then pressure decomposition $-250^{\circ} \mathrm{C}$. $72 \mathrm{~h} \rightarrow$ evaporate the $\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$ dissolve in $\mathrm{HCl} \rightarrow 100 \mathrm{ml}$ flask | standard solution: <br> a) Aldrich. Wako $1000 \mathrm{mg} / \mathrm{L}$ <br> b) Spex $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 36 | $\mathrm{M}: 0.5 \mathrm{~g}$; pressure decomposition with $\mathrm{HF}(73 \%)-\mathrm{HNO}_{3}(100 \%)$ DAB-II $250^{\circ} \mathrm{C}, 8 \mathrm{~h}$ | Kraft $1 \mathrm{~g} / \mathrm{L} \mathrm{Mg}$ | ICP OES |
|  | $\mathrm{M}: 0.08 \mathrm{~g}$; pressing in graphite electrode | synthetic mixed oxide | DCarc OES |

Compilation of sample preparation procedures, calibrations and methods for final determination used in interlaboratory comparison for certification of CRM BAM-S003

| M Manganese |  |  |  |
| :---: | :---: | :---: | :---: |
| Lab code | Sample Preparation <br> ( $\mathrm{M}=$ mass of sub-samples) | Calibration | Final Determination |
| 1 | $\mathrm{M}: 0.150 \mathrm{~g}$; no sample digestion | $\mathrm{MnSO}_{4}{ }^{*} 4 \mathrm{H}_{2} \mathrm{O}$ | INAA |
| 2 | no sample digestion |  | $\mathrm{K}_{0}$-INAA |
| 4 | without sample preparation | Merck-Mn-standard solution $1000 \mathrm{mg} / \mathrm{L}$ | ETV-ICP OES |
| 8 | M: 50 mg ; Decomposition with 1 g KOH at $400^{\circ} \mathrm{C}$ in a crucible of glassy carbon | Merck multi element stock solution $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 11 | M: 5.0 g ; Decomposition with $\mathrm{H}_{2} \mathrm{SO}_{4} . \mathrm{HF} . \mathrm{HNO}_{3} \mathrm{HCl}$. described in ISO 9286. 1997. Part 3.5.4 | Titrisol $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 12 | $\mathrm{M}: 0.5 \mathrm{~g} \mathrm{HF}(70 \%)+\mathrm{HNO}_{3}$ (100\%) 24 h by $220^{\circ} \mathrm{C}$ pressure digestion system $\rightarrow$ 50 ml flask | Merck: Mn stock solution $1 \mathrm{~g} / \mathrm{L}$ | ICP OES |
| 13 | M: 0.25 g ; Micro wave decomposition with $\mathrm{HCl}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ | Merck standard solution 1000 mg/L | ET AAS |
| 14 | M: 0.5 g ; dissolve in $\mathrm{HNO}_{3} / \mathrm{HCl}$. filtering; $\rightarrow$ 250 ml | Merck: standard solution $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 19 | $\begin{aligned} & \mathrm{M}: 0.25 \mathrm{~g} ; \mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4} . \mathrm{HP} 250^{\circ} \mathrm{C} 18 \mathrm{~h} \\ & \rightarrow 50 \mathrm{ml} \text { flask } \end{aligned}$ | Mn . metal digestion reagent HCl | ICP OES |
| 20 | $\mathrm{M}: 0.1 \mathrm{~g}$ Micro wave decomposition with HF- $\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4} 260^{\circ} \mathrm{C}$ | Mn metal (99.9\%. J\&M). digestion reagent $\mathrm{HNO}_{3}$ | ICP OES |
| 22 | $\mathrm{M}: 0.25 \mathrm{~g}$; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel $\left(16 \mathrm{~h}-250^{\circ} \mathrm{C}\right) \rightarrow 50 \mathrm{ml}$ flask | Merck $1 \mathrm{~g} / \mathrm{L}$ checked with self prepared standard and ICP-IV Merck standard | ICP OES |
| 23 | $\mathrm{M}: 0.25 \mathrm{~g}$; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel $\left(16 \mathrm{~h}-250^{\circ} \mathrm{C}\right) \rightarrow 50 \mathrm{ml}$ flask | Mn metal (4N J\&M) digestion reagent HCl | ET AAS |
| 24 | $\mathrm{M}: 0.25 \mathrm{~g}$; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel $\left(16 \mathrm{~h}-250^{\circ} \mathrm{C}\right) \rightarrow 50 \mathrm{ml}$ flask | Mn - pure metal 99.99\%. Alfa JM checked with Merck 1000 mg/L Mn | ICP-MS |
| 26 | M: 0.5 g ; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel ( $12 \mathrm{~h}-250^{\circ} \mathrm{C}$ ) | standard solution: <br> a) Merck $1000 \mathrm{mg} / \mathrm{L}$ <br> b) Fluka $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 28 | $\mathrm{M}: 0.25 \mathrm{~g}$; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel $\left(12 \mathrm{~h}-240^{\circ} \mathrm{C}\right) \rightarrow 25 \mathrm{ml}$ flask | Merck CERTIPUR $1000 \mathrm{mg} / \mathrm{L}$; Baker Atomic absorption standard $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 31 | M: $0.5 \mathrm{~g} ; \mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 230^{\circ} \mathrm{C} 16 \mathrm{~h} \rightarrow$ dryness $\rightarrow$ dissolve (HCl) $\rightarrow 100 \mathrm{ml}$ flask | JCSS - Wako Co. 100.6 mg/L | ICP OES |
| 33 | $\mathrm{M}: 0.5 \mathrm{~g}$; SiC in Pt-crucible with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$. then pressure decomposition $-250^{\circ} \mathrm{C}$. $72 \mathrm{~h} \rightarrow$ evaporate the $\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$ dissolve in $\mathrm{HCl} \rightarrow 100 \mathrm{ml}$ flask | standard solution: <br> a) Aldrich. Wako $1000 \mathrm{mg} / \mathrm{L}$ <br> b) Spex $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 35 | $\mathrm{M}: 0.08-0.11 \mathrm{~g} ;$ no sample digestion | self made $0.9700 \mathrm{mg} / \mathrm{g}$ | INAA |
| 36 | M: 0.5 g ; pressure decomposition with $\mathrm{HF}(73 \%)-\mathrm{HNO}_{3}(100 \%)$ DAB-II $250^{\circ} \mathrm{C}, 8 \mathrm{~h}$ | Kraft $1 \mathrm{~g} / \mathrm{L} \mathrm{Mn}$ | ICP OES |
|  | $\mathrm{M}: 0.08 \mathrm{~g}$; pressing in graphite electrode | synthetic mixed oxide | DCarc OES |

Compilation of sample preparation procedures, calibrations and methods for final determination used in interlaboratory comparison for certification of CRM BAM-S003

| Sodium |  |  |  |
| :---: | :---: | :---: | :---: |
| Lab code | Sample Preparation ( $\mathbf{M}=$ mass of sub-samples) | Calibration | Final Determination |
| 1 | $\mathrm{M}: 0.150 \mathrm{~g}$; no sample digestion | $\mathrm{Na}_{2} \mathrm{CO}_{3}$ | INAA |
| 2 | no sample digestion |  | $\mathrm{K}_{0}$-INAA |
| 4 | without sample preparation | Merck-Na-standard solution $1000 \mathrm{mg} / \mathrm{L}$ | ETV-ICP OES |
| 8 | M: 50 mg ; Decomposition with 1 g KOH at $400^{\circ} \mathrm{C}$ in a crucible of glassy carbon | Merck multi element stock solution $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 11 | M: 5.0 g ; Decomposition with $\mathrm{H}_{2} \mathrm{SO}_{4}$. HF. $\mathrm{HNO}_{3} \mathrm{HCl}$. described in ISO 9286. 1997. Part 3.5.4 | Titrisol $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 12 | $\mathrm{M}: 0.5 \mathrm{~g} \mathrm{HF}(70 \%)+\mathrm{HNO}_{3}$ (100\%) 24 h by $220^{\circ} \mathrm{C}$ pressure digestion system $\rightarrow$ 50 ml flask | Merck: Na stock solution $1 \mathrm{~g} / \mathrm{L}$ | ICP OES |
| 14 | M: 0.5 g ; dissolve in $\mathrm{HNO}_{3} / \mathrm{HCl}$. filtering; $\rightarrow$ 250 ml | Merck: standard solution $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 18 | M: 0.2 g ; Decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel | Spex high purity $10 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 19 | $\begin{aligned} & \mathrm{M}: 0.25 \mathrm{~g} ; \mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4} . \mathrm{HP} 250^{\circ} \mathrm{C} 18 \mathrm{~h} \\ & \rightarrow 50 \mathrm{ml} \text { flask } \end{aligned}$ | NaCl . digestion reagent water | F AES |
| 20 | M: 0.1 g Micro wave decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4} 260^{\circ} \mathrm{C}$ | $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (99.9\%. Merck. waterfree). digestion reagent $\mathrm{HNO}_{3}$ | ICP OES |
| 22 | $\mathrm{M}: 0.25 \mathrm{~g}$; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel $\left(16 \mathrm{~h}-250^{\circ} \mathrm{C}\right) \rightarrow 50 \mathrm{ml}$ flask | Merck $1 \mathrm{~g} / \mathrm{L}$ checked with self prepared standard and ICP-IV Merck standard | ICP OES |
| 23 | M: 0.25 g ; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel $\left(16 \mathrm{~h}-250^{\circ} \mathrm{C}\right) \rightarrow 50 \mathrm{ml}$ flask | NaCl (5N J\&M) digestion reagent HCl | F AAS |
| 24 | M: 0.25 g ; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel $\left(16 \mathrm{~h}-250^{\circ} \mathrm{C}\right) \rightarrow 50 \mathrm{ml}$ flask | SRM 3152a. NIST checked with Merck 1000 mg/L Na | ICP-MS |
| 26 | M: 0.5 g ; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel ( $12 \mathrm{~h}-250^{\circ} \mathrm{C}$ ) | standard solution: <br> a) Merck $1000 \mathrm{mg} / \mathrm{L}$ <br> b) Fluka $1000 \mathrm{mg} / \mathrm{L}$ | F AAS |
| 28 | $\mathrm{M}: 0.25 \mathrm{~g}$; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel $\left(12 \mathrm{~h}-240^{\circ} \mathrm{C}\right) \rightarrow 25 \mathrm{ml}$ flask | Merck CERTIPUR $1000 \mathrm{mg} / \mathrm{L}$; Baker Atomic absorption standard $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 31 | $\mathrm{M}: 0.5 \mathrm{~g} ; \mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 230^{\circ} \mathrm{C} 16 \mathrm{~h} \rightarrow$ dryness $\rightarrow$ dissolve ( HCl ) $\rightarrow 100 \mathrm{ml}$ flask | JCSS - Kanto Co. $1.005 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 33 | $\mathrm{M}: 0.5 \mathrm{~g}$; SiC in Pt-crucible with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$. then pressure decomposition $-250^{\circ} \mathrm{C}$. $72 \mathrm{~h} \rightarrow$ evaporate the $\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$ dissolve in $\mathrm{HCl} \rightarrow 100 \mathrm{ml}$ flask | standard solution: <br> a) Aldrich. Wako $1000 \mathrm{mg} / \mathrm{L}$ <br> b) Spex $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 35 | $\mathrm{M}: 0.08-0.11 \mathrm{~g}$; no sample digestion | NaCl self made $0.7202 \mathrm{mg} / \mathrm{g}$ | INAA |
| 36 | $\mathrm{M}: 0.5 \mathrm{~g}$; pressure decomposition with HF ( $73 \%$ ) $-\mathrm{HNO}_{3}(100 \%)$ DAB-II $250^{\circ} \mathrm{C}$, 8 h | Kraft $1 \mathrm{~g} / \mathrm{L} \mathrm{Na}$ | ICP OES |
|  | $\mathrm{M}: 0.5 \mathrm{mg}$; no sample digestion | Kraft $1 \mathrm{~g} / \mathrm{L} \mathrm{Na}$ | S AAS |

Compilation of sample preparation procedures, calibrations and methods for final determination used in interlaboratory comparison for certification of CRM BAM-S003

| Nickel |  |  |  |
| :---: | :---: | :---: | :---: |
| Lab code | Sample Preparation ( $\mathrm{M}=$ mass of sub-samples) | Calibration | Final Determination |
| 2 | no sample digestion |  | $\mathrm{K}_{0}$-INAA |
| 4 | without sample preparation | Merck-Ni-standard solution $1000 \mathrm{mg} / \mathrm{L}$ | ETV-ICP OES |
| 6 | M: 0.5 g Decomposition with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in Pt-crucible | Ni-stock-solution $1000 \mathrm{mg} / \mathrm{L}$ | F AAS |
| 8 | M: 50 mg ; Decomposition with 1 g KOH at $400^{\circ} \mathrm{C}$ in a crucible of glassy carbon | Merck multi element stock solution $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 11 | M: 5.0 g ; Decomposition with $\mathrm{H}_{2} \mathrm{SO}_{4}$. $\mathrm{HF} . \mathrm{HNO}_{3} \mathrm{HCl}$. described in ISO 9286. 1997. Part 3.5.4 | Titrisol $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 12 | $\mathrm{M}: 0.5 \mathrm{~g} \mathrm{HF}(70 \%)+\mathrm{HNO}_{3}(100 \%)$ 24 h by $220^{\circ} \mathrm{C}$ pressure digestion system $\rightarrow$ 50 ml flask | Merck: Ni stock solution $1 \mathrm{~g} / \mathrm{L}$ | ICP OES |
| 13 | $\mathrm{M}: 0.25 \mathrm{~g}$; Micro wave decomposition with $\mathrm{HCl}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ | Merck standard solution 1000 mg/L | ICP OES |
| 14 | M: 0.5 g ; dissolve in $\mathrm{HNO}_{3} / \mathrm{HCl}$. filtering; $\rightarrow$ 250 ml | Merck: standard solution 1000 mg/L | ICP OES |
| 16 | $\mathrm{M}: 0.1 \mathrm{~g}$; sample mixed with $1 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}$ and $1 \mathrm{~g} \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$, heat with a gas burner for 6075 min , leach out with water, add 10 ml HCl <br> $\rightarrow$ dilute to 100 ml | $\mathrm{NiO} 1000 \mathrm{mg} / \mathrm{L}$ in $1 \% \mathrm{HNO}_{3}$ calibration: 0-2-5 mg/L matrix matching: $\mathrm{HCl}, \mathrm{Na}_{2} \mathrm{CO}_{3}$ and $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$, were added. | ICP OES |
| 18 | M: 0.2 g ; Decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel | Spex high purity $10 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 19 | $\begin{aligned} & \mathrm{M}: 0.25 \mathrm{~g} ; \mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4} . \mathrm{HP} 250^{\circ} \mathrm{C} 18 \mathrm{~h} \\ & \rightarrow 50 \mathrm{ml} \text { flask } \end{aligned}$ | Ni metal; digestion reagent $\mathrm{HNO}_{3}$ | ICP OES |
| 20 | $\mathrm{M}: 0.1 \mathrm{~g}$ Micro wave decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4} 260^{\circ} \mathrm{C}$ | Ni metal (99.998\%. J\&M). digestion reagent $\mathrm{HNO}_{3}$ | ICP OES |
| 22 | M: 0.25 g ; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel $\left(16 \mathrm{~h}-250^{\circ} \mathrm{C}\right) \rightarrow 50 \mathrm{ml}$ flask | Merck $1 \mathrm{~g} / \mathrm{L}$ checked with self prepared standard and ICP-IV Merck standard | ICP OES |
| 23 | $\mathrm{M}: 0.25 \mathrm{~g}$; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel $\left(16 \mathrm{~h}-250^{\circ} \mathrm{C}\right) \rightarrow 50 \mathrm{ml}$ flask | Ni metal (4N J\&M) digestion reagent $\mathrm{HNO}_{3}$ | ET AAS |
| 24 | $\mathrm{M}: 0.25 \mathrm{~g}$; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel $\left(16 \mathrm{~h}-250^{\circ} \mathrm{C}\right) \rightarrow 50 \mathrm{ml}$ flask | Ni- Powder. 5N Purity. Alfa JM checked with Merck 1000 mg/L Ni | ICP-MS |
| 25 | M: 0.005 g sample mixing; without sample preparation | Ni powder Merck addition method: pure $\mathrm{SiC}+$ addition Ni | DCarc-OES |
| 26 | M: 0.5 g ; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel (12h-250 ${ }^{\circ} \mathrm{C}$ ) | standard solution: <br> a) Merck $1000 \mathrm{mg} / \mathrm{L}$ <br> b) Fluka $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 27 | $\mathrm{M}: 0.1 \mathrm{~g}$; melting with $\mathrm{Li}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}\left(1100^{\circ} \mathrm{C} 1 \mathrm{~h}\right)$ dissolve in $\mathrm{HCl} \rightarrow 250 \mathrm{ml}$ flask | Merck CERTIPUR $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 28 | $\mathrm{M}: 0.25 \mathrm{~g}$; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel $\left(12 \mathrm{~h}-240^{\circ} \mathrm{C}\right) \rightarrow 25 \mathrm{ml}$ flask | Merck CERTIPUR 1000 mg/L; Baker Atomic absorption standard $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 31 | M: $0.5 \mathrm{~g} ; \mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 230^{\circ} \mathrm{C} 16 \mathrm{~h} \rightarrow$ dryness $\rightarrow$ dissolve $(\mathrm{HCl}) \rightarrow 100 \mathrm{ml}$ flask | JCSS - Kanto Co. 100.8 mg/L | ICP OES |
| 33 | $\mathrm{M}: 0.5 \mathrm{~g}$; SiC in Pt-crucible with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$. then pressure decomposition $-250^{\circ} \mathrm{C}$. $72 \mathrm{~h} \rightarrow$ evaporate the $\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$ dissolve in $\mathrm{HCl} \rightarrow 100 \mathrm{ml}$ flask | standard solution: <br> a) Aldrich. Wako $1000 \mathrm{mg} / \mathrm{L}$ <br> b) Spex $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 36 | M: 0.5 g ; pressure decomposition with $\mathrm{HF}(73 \%)-\mathrm{HNO}_{3}(100 \%)$ DAB-II $250^{\circ} \mathrm{C}, 8 \mathrm{~h}$ | Kraft $1 \mathrm{~g} / \mathrm{L} \mathrm{Ni}$ | ICP OES |
|  | $\mathrm{M}: 0.08 \mathrm{~g}$; pressing in graphite electrode | synthetic mixed oxide | DCarc OES |

Compilation of sample preparation procedures, calibrations and methods for final determination used in interlaboratory comparison for certification of CRM BAM-S003

| Titanium |  |  |  |
| :---: | :---: | :---: | :---: |
| Lab code | Sample Preparation ( $\mathbf{M}=$ mass of sub-samples) | Calibration | Final Determination |
| 2 | no sample digestion |  | $\mathrm{K}_{0}$-INAA |
| 4 | without sample preparation | Merck-Ti-standard solution $1000 \mathrm{mg} / \mathrm{L}$ | ETV-ICP OES |
| 8 | M: 50 mg ; Decomposition with 1 g KOH at $400^{\circ} \mathrm{C}$ in a crucible of glassy carbon | Merck multi element stock solution $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 11 | M: 5.0 g ; Decomposition with $\mathrm{H}_{2} \mathrm{SO}_{4} . \mathrm{HF} . \mathrm{HNO}_{3} \mathrm{HCl}$. described in ISO 9286. 1997. Part 3.5.4 | Titrisol $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 12 | $\mathrm{M}: 0.5 \mathrm{~g} \mathrm{HF}(70 \%)+\mathrm{HNO}_{3}$ (100\%) 24 h by $220^{\circ} \mathrm{C}$ pressure digestion system $\rightarrow$ 50 ml flask | Merck: Ti stock solution $1 \mathrm{~g} / \mathrm{L}$ | ICP OES |
| 13 | $\mathrm{M}: 0.25 \mathrm{~g}$; Micro wave decomposition with $\mathrm{HCl}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ | Merck standard solution 1000 mg/L | ICP OES |
| 14 | M: 0.5 g ; dissolve in $\mathrm{HNO}_{3} / \mathrm{HCl}$. filtering; $\rightarrow$ 250 ml flask | Merck: standard solution $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 16 | $\mathrm{M}: 0.1 \mathrm{~g}$; sample mixed with $1 \mathrm{~g} \mathrm{Na} \mathrm{CO}_{3}$ and $1 \mathrm{~g} \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$, heat with a gas burner for 6075 min , leach out with water, add 10 ml HCl $\rightarrow$ dilute to 100 ml | $\mathrm{TiO}_{2} 1000 \mathrm{mg} / \mathrm{L}$ in $5 \% \mathrm{HCl}$ calibration: 0-2-5 mg/L matrix matching: $\mathrm{HCl}, \mathrm{Na}_{2} \mathrm{CO}_{3}$ and $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$, were added. | ICP OES |
| 18 | M: 0.2 g ; Decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel | Spex high purity $10 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 19 | M: $0.25 \mathrm{~g} ; \mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$. HP $250^{\circ} \mathrm{C} 18 \mathrm{~h}$ $\rightarrow 50 \mathrm{ml}$ flask | Ti metal digestion reagent $\mathrm{H}_{2} \mathrm{SO}_{4}$ | ICP OES |
| 20 | $\mathrm{M}: 0.1 \mathrm{~g}$ Micro wave decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4} 260^{\circ} \mathrm{C}$ | Ti metal (99.9\%. Koch Light). digestion reagent $\mathrm{HF} / \mathrm{HNO}_{3}$ | ICP OES |
| 22 | M: 0.25 g ; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel $\left(16 \mathrm{~h}-250^{\circ} \mathrm{C}\right) \rightarrow 50 \mathrm{ml}$ flask | Merck $1 \mathrm{~g} / \mathrm{L}$ checked with self prepared standard and ICP-IV Merck standard | ICP OES |
| 24 | M: 0.25 g ; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel $\left(16 \mathrm{~h}-250^{\circ} \mathrm{C}\right) \rightarrow 50 \mathrm{ml}$ flask | SRM 3162a. NIST checked with Spectrascan $1312-2.100 \mathrm{mg} / \mathrm{L} \mathrm{Ti}$ | ICP-MS |
| 25 | $\mathrm{M}: 0.005 \mathrm{~g}$ sample mixing; without sample preparation | $\mathrm{TiO}_{2}$ powder Merck addition method: pure $\mathrm{SiC}+$ addition $\mathrm{TiO}_{2}$ | DCarc-OES |
| 26 | M: 0.5 g ; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel (12h- $250^{\circ} \mathrm{C}$ ) | standard solution: <br> a) Merck $1000 \mathrm{mg} / \mathrm{L}$ <br> b) Fluka $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 27 | $\mathrm{M}: 0.1 \mathrm{~g}$; melting with $\mathrm{Li}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}\left(1100^{\circ} \mathrm{C} 1 \mathrm{~h}\right)$ dissolve in $\mathrm{HCl} \rightarrow 250 \mathrm{ml}$ flask | Merck Titrisol $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 28 | M: 0.25 g ; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel $\left(12 \mathrm{~h}-240^{\circ} \mathrm{C}\right) \rightarrow 25 \mathrm{ml}$ flask | Merck CERTIPUR $1000 \mathrm{mg} / \mathrm{L}$; Baker Atomic absorption standard $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 31 | M: $0.5 \mathrm{~g} ; \mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 230^{\circ} \mathrm{C} 16 \mathrm{~h} \rightarrow$ dryness $\rightarrow$ dissolve $(\mathrm{HCl}) \rightarrow 100 \mathrm{ml}$ flask | JCSS - Kanto Co. 1.006 g/L | ICP OES |
| 33 | $\mathrm{M}: 0.5 \mathrm{~g}$; SiC in Pt-crucible with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$. then pressure decomposition $-250^{\circ} \mathrm{C}$. $72 \mathrm{~h} \rightarrow$ evaporate the $\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$ dissolve in $\mathrm{HCl} \rightarrow 100 \mathrm{ml}$ flask | standard solution: <br> Spex 1000 mg/L | ICP OES |
| 36 | $\mathrm{M}: 0.5 \mathrm{~g}$; pressure decomposition with $\mathrm{HF}(73 \%)-\mathrm{HNO}_{3}(100 \%)$ DAB-II $250^{\circ} \mathrm{C}$, 8 h | Kraft $1 \mathrm{~g} / \mathrm{L}$ Ti | ICP OES |
|  | $\mathrm{M}: 0.08 \mathrm{~g}$; pressing in graphite electrode | synthetic mixed oxide | DCarc OES |

Compilation of sample preparation procedures, calibrations and methods for final determination used in interlaboratory comparison for certification of CRM BAM-S003

| Vanadium |  |  |  |
| :---: | :---: | :---: | :---: |
| Lab code | Sample Preparation ( $\mathbf{M}=$ mass of sub-samples) | Calibration | Final Determination |
| 2 | no sample digestion |  | $\mathrm{K}_{0}$-INAA |
| 4 | without sample preparation | Merck-V-standard solution $1000 \mathrm{mg} / \mathrm{L}$ | ETV-ICP OES |
| 8 | M: 50 mg ; Decomposition with 1 g KOH at $400^{\circ} \mathrm{C}$ in a crucible of glassy carbon | Merck multi element stock solution $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 11 | M: 5.0 g ; Decomposition with $\mathrm{H}_{2} \mathrm{SO}_{4}$. $\mathrm{HF} . \mathrm{HNO}_{3} \mathrm{HCl}$. described in ISO 9286. 1997. Part 3.5.4 | Titrisol $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 12 | $\mathrm{M}: 0.5 \mathrm{~g} \mathrm{HF}(70 \%)+\mathrm{HNO}_{3}(100 \%)$ 24 h by $220^{\circ} \mathrm{C}$ pressure digestion system $\rightarrow$ 50 ml flask | Merck: V stock solution $1 \mathrm{~g} / \mathrm{L}$ | ICP OES |
| 13 | $\mathrm{M}: 0.25 \mathrm{~g}$; Micro wave decomposition with $\mathrm{HCl}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ | Merck standard solution 1000 mg/L | ICP OES |
| 14 | M: 0.5 g ; dissolve in $\mathrm{HNO}_{3} / \mathrm{HCl}$. filtering; $\rightarrow$ 250 ml flask | Merck: standard solution $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 16 | $\mathrm{M}: 0.1 \mathrm{~g}$; sample mixed with $1 \mathrm{~g} \mathrm{Na} \mathrm{CO}_{3}$ and $1 \mathrm{~g} \mathrm{Na} 2 \mathrm{~B}_{4} \mathrm{O}_{7}$, heat with a gas burner for 6075 min , leach out with water, add 10 ml HCl $\rightarrow$ dilute to 100 ml | Bought from the reference materials and calibration solution provider. <br> calibration: 0-2-5 mg/L matrix matching: $\mathrm{HCl}, \mathrm{Na}_{2} \mathrm{CO}_{3}$ and $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$, were added. | ICP OES |
| 18 | M: 0.2 g ; Decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel | Spex high purity $10 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 19 | $\begin{aligned} & \mathrm{M}: 0.25 \mathrm{~g} ; \mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4} . \mathrm{HP} 250^{\circ} \mathrm{C} 18 \mathrm{~h} \\ & \rightarrow 50 \mathrm{ml} \text { flask } \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{2} \mathrm{O}_{5} \text {. } \\ & \text { digestion reagent } \mathrm{NaOH} . \mathrm{H}_{2} \mathrm{SO}_{4} \end{aligned}$ | ICP OES |
| 20 | M: 0.1 g Micro wave decomposition with HF-$\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4} 260^{\circ} \mathrm{C}$ | V (99.9\%. Ventron). digestion reagent $\mathrm{HF} / \mathrm{HNO}_{3}$ | ICP OES |
| 22 | M: 0.25 g ; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel $\left(16 \mathrm{~h}-250^{\circ} \mathrm{C}\right) \rightarrow 50 \mathrm{ml}$ flask | Merck $1 \mathrm{~g} / \mathrm{L}$ checked with self prepared standard and ICP-IV Merck standard | ICP OES |
| 24 | M: 0.25 g ; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel $\left(16 \mathrm{~h}-250^{\circ} \mathrm{C}\right) \rightarrow 50 \mathrm{ml}$ flask | SRM 3165. NIST checked with Merck 1000 mg/L V | ICP-MS |
| 25 | $\mathrm{M}: 0.005 \mathrm{~g}$ sample mixing; without sample preparation | $\mathrm{V}_{2} \mathrm{O}_{5}$ powder Merck addition method: pure $\mathrm{SiC}+$ addition $\mathrm{V}_{2} \mathrm{O}_{5}$ | DCarc-OES |
| 26 | M: 0.5 g ; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel (12h-250 ${ }^{\circ} \mathrm{C}$ ) | standard solution: <br> a) Merck $1000 \mathrm{mg} / \mathrm{L}$ <br> b) Fluka $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 27 | M: 0.1 g ; melting with $\mathrm{Li}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}\left(1100^{\circ} \mathrm{C} 1 \mathrm{~h}\right)$ dissolve in $\mathrm{HCl} \rightarrow 250 \mathrm{ml}$ flask | Merck CERTIPUR $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 28 | M: 0.25 g ; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel $\left(12 \mathrm{~h}-240^{\circ} \mathrm{C}\right) \rightarrow 25 \mathrm{ml}$ flask | Merck CERTIPUR 1000 mg/L; Baker Atomic absorption standard $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 31 | M: $0.5 \mathrm{~g} ; \mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 230^{\circ} \mathrm{C} 16 \mathrm{~h} \rightarrow$ dryness $\rightarrow$ dissolve $(\mathrm{HCl}) \rightarrow 100 \mathrm{ml}$ flask | JCSS - Kanto Co. $1.005 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 36 | M: 0.5 g ; pressure decomposition with HF ( $73 \%$ ) $-\mathrm{HNO}_{3}(100 \%)$ DAB-II $250^{\circ} \mathrm{C}, 8 \mathrm{~h}$ | Kraft $1 \mathrm{~g} / \mathrm{L}$ V | ICP OES |
|  | $\mathrm{M}: 0.08 \mathrm{~g}$; pressing in graphite electrode | synthetic mixed oxide | DCarc OES |

Compilation of sample preparation procedures, calibrations and methods for final determination used in interlaboratory comparison for certification of CRM BAM-S003

| Zirconium |  |  |  |
| :---: | :---: | :---: | :---: |
| Lab code | Sample Preparation ( $\mathbf{M}=$ mass of sub-samples) | Calibration | Final Determination |
| 1 | $\mathrm{M}: 0.5 \mathrm{~g}$; no sample digestion | $\mathrm{ZrOCl}_{4}{ }^{*} 8 \mathrm{H}_{2} \mathrm{O}$ | INAA |
| 2 | no sample digestion |  | $\mathrm{K}_{0}$-INAA |
| 4 | without sample preparation | Merck-Zr-standard solution 1000 mg/L | ETV-ICP OES |
| 8 | M: 50 mg ; Decomposition with 1 g KOH at $400^{\circ} \mathrm{C}$ in a crucible of glassy carbon | Merck multi element stock solution $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 11 | M: 5.0 g ; Decomposition with $\mathrm{H}_{2} \mathrm{SO}_{4}$. HF. $\mathrm{HNO}_{3} \mathrm{HCl}$. described in ISO 9286. 1997. Part 3.5.4 | Titrisol $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 12 | $\mathrm{M}: 0.5 \mathrm{~g} \mathrm{HF}(70 \%)+\mathrm{HNO}_{3}$ (100\%) <br> 24 h by $220^{\circ} \mathrm{C}$ pressure digestion system $\rightarrow$ <br> 50 ml flask | Kraft: Zr stock solution $1 \mathrm{~g} / \mathrm{L}$ | ICP OES |
| 13 | $\mathrm{M}: 0.25 \mathrm{~g}$; Micro wave decomposition with $\mathrm{HCl}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ | Merck standard solution 1000 mg/L | ICP-MS |
| 14 | M: 0.5 g ; dissolve in $\mathrm{HNO}_{3} / \mathrm{HCl}$. filtering; $\rightarrow$ 250 ml flask | Merck: standard solution $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 16 | M: 0.1 g ; sample mixed with $1 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}$ and $1 \mathrm{~g} \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$, heat with a gas burner for 6075 min , leach out with water, add 10 ml HCl dilute to 100 ml | Bought from the reference material and calibration solution provider. $1000 \mathrm{mg} / \mathrm{L}$ in $10 \% \mathrm{HCl}$ calibration: 0-2-5 mg/L matrix matching: $\mathrm{HCl}, \mathrm{Na}_{2} \mathrm{CO}_{3}$ and $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$, were added. | ICP OES |
| 18 | M: 0.2 g ; Decomposition with HF-HNO3-H2SO4 in a high pressure vessel | Spex high purity 10 ppm | ICP OES |
| 19 | $\mathrm{M}: 0.25 \mathrm{~g} ; \mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4} . \mathrm{HP} 250^{\circ} \mathrm{C} 18 \mathrm{~h}$ $\rightarrow 50 \mathrm{ml}$ flask | Zr metal digestion reagent $\mathrm{H}_{2} \mathrm{SO}_{4}$ | ICP OES |
| 20 | M: 0.1 g Micro wave decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4} .260^{\circ} \mathrm{C}$ | Zr metal (99.95\%. J\&M). digestion reagent $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}_{2} \mathrm{O}_{2}$ | ICP OES |
| 22 | M: 0.25 g ; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel $\left(16 \mathrm{~h}-250^{\circ} \mathrm{C}\right) \rightarrow 50 \mathrm{ml}$ flask | Merck $1 \mathrm{~g} / \mathrm{L}$ checked with self prepared standard and ICP-IV Merck standard | ICP OES |
| 24 | $\mathrm{M}: 0.25 \mathrm{~g}$; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel $\left(16 \mathrm{~h}-250^{\circ} \mathrm{C}\right) \rightarrow 50 \mathrm{ml}$ flask | Zr foil. Alfa JM checked with Spectrascan $1312-2.100 \mathrm{mg} / \mathrm{L} \mathrm{Zr}$ | ICP-MS |
| 26 | M: 0.5 g ; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel ( $12 \mathrm{~h}-250^{\circ} \mathrm{C}$ ) | standard solution: <br> a) Merck $1000 \mathrm{mg} / \mathrm{L}$ <br> b) Fluka $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 27 | $\mathrm{M}: 0.1 \mathrm{~g}$; melting with $\mathrm{Li}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}\left(1100^{\circ} \mathrm{C} 1 \mathrm{~h}\right)$ dissolve in $\mathrm{HCl} \rightarrow 250 \mathrm{ml}$ flask | Merck CERTIPUR $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 28 | $\mathrm{M}: 0.25 \mathrm{~g}$; decomposition with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ in a high pressure vessel $\left(12 \mathrm{~h}-240^{\circ} \mathrm{C}\right) \rightarrow 25 \mathrm{ml}$ flask | Merck CERTIPUR 1000 mg/L; Baker Atomic absorption standard $1000 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 31 | $\mathrm{M}: 0.5 \mathrm{~g} ; \mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 230^{\circ} \mathrm{C} 16 \mathrm{~h} \rightarrow$ dryness $\rightarrow$ dissolve ( HCl ) $\rightarrow 100 \mathrm{ml}$ flask | JCSS - Kanto Co. $1.006 \mathrm{mg} / \mathrm{L}$ | ICP OES |
| 33 | $\mathrm{M}: 0.5 \mathrm{~g}$; SiC in Pt-crucible with $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$. then pressure decomposition $-250^{\circ} \mathrm{C} .72 \mathrm{~h} \rightarrow$ evaporate the $\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$ dissolve in $\mathrm{HCl} \rightarrow 100 \mathrm{ml}$ flask | standard solution: Spex 1000 mg/L | ICP OES |
| 36 | $\mathrm{M}: 0.5 \mathrm{~g}$; pressure decomposition with HF ( $73 \%$ ) $-\mathrm{HNO}_{3}$ ( $100 \%$ ) DAB-II $250^{\circ} \mathrm{C}$, 8 h | Kraft $1 \mathrm{~g} / \mathrm{L} \mathrm{Zr}$ | ICP OES |
|  | $\mathrm{M}: 0.08 \mathrm{~g}$; pressing in graphite electrode | synthetic mixed oxide | DCarc OES |

Compilation of sample preparation procedures, calibrations and methods for final determination used in interlaboratory comparison for certification of CRM BAM-S003

| Total carbon |  |  |  |
| :---: | :---: | :---: | :---: |
| Labcode | Sample preparation ( $M$ = mass of sub-samples) | Calibration | Final determination |
| 5 | 40 mg combustion in oxygen atmosphere. Temp. $1450^{\circ} \mathrm{C}$ | $\mathrm{CaCO}_{3}$ | CGHE/comb.-IR |
| 6 | M:50 mg; combustion | calibration with $\mathrm{CaCO}_{3}$ <br> BAM Pure Substance No. 3 | CGHE/comb.-IR |
| 7 | 1.5 g Cu -(pieces of wire) at first in a crucible, than the sample in a folded Al-ship and mulch with W as additional charge; crucible cover with a lid. | $\mathrm{CaCO}_{3}$ | CGHE/comb.-IR |
| 8 | M: 35 mg ; coulometric determination with gas split | Calibrated by a SiC-Standard (ESK- Standard No.1. SiC-dkl. F180), traced back via $\mathrm{CaCO}_{3}$ (Riedel de Haen, p.a., 6 measurements) | CGHE/coul. |
| 9 | M: 67-106 mg; combustion | Calibrated by a SiC-standard (ESK- Standard No. 1) traced back via $\mathrm{CaCO}_{3}$ (Merck 12.0002\% C, 5 measurements) | CGHE/comb.-IR |
| 11 | $\mathrm{M}: 40 \mathrm{mg}$ combustion $\left(1050^{\circ} \mathrm{C}\right)$ with lead borate. IR-detection of $\mathrm{CO}_{2}$ | $\mathrm{CaCO}_{3}$ | CGHE/comb.-IR |
| 12 | $\mathrm{M}: 60 \mathrm{mg}$ combustion $\rightarrow \mathrm{Cu}$ addition | Calibration: <br> $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (Merck, suprapur, dried 11.332\% C) and $\mathrm{BaCO}_{3}$ (Riedel de Haen, 31142, dried $6.086 \%$ C) checked against BCS CRM 352 | CGHE/comb.-TC |
| 13 | M: 50 mg ; Carrier gas hot extraction in reactive atmosphere (Oxygen_"combustion") with IRdetection (EMIA 820) | $\mathrm{CaCO}_{3}$ | CGHE/comb.-IR |
| 16 | $\mathrm{M}: 10 \mathrm{mg}$; sample mixed with $0.25 \mathrm{~g} \mathrm{~Pb}_{3} \mathrm{O}_{4}$, heat at $1200^{\circ} \mathrm{C}$ in oxygen ( $150 \mathrm{ml} / \mathrm{min}$ ), the $\mathrm{CO}_{2}$ was absorbed with a solution ( $500 \mathrm{ml} \mathrm{N}, \mathrm{N}$ dimethylformamide $+25 \mathrm{ml} \mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$, then titrate with tetrabutyl ammonium hydroxide solution |  | CGHE/titr. |
| 18 | $\mathrm{M}: 10 \mathrm{mg}$ sample was combusted by using Fechips as analyst | Matrix Reference Material: LECO Part\# 501-024 ; (C and S in white iron) No traceability! | CGHE/comb.-IR |
| 19 | M: 200 mg 1. copper powder + SiC agitate together. then mulch SiC with copper powder | Traceability by primary method gravimetry checked by an WC_SRM $(6.100 \pm 0.005 \% \mathrm{C})$ | Comb./grav. |
| 20 | M: 25 mg ; combustion with Ni-shuck. $\mathrm{Fe}+\mathrm{W}$-additional charge. crucible + cup by $1200^{\circ} \mathrm{C}$ glowed in $\mathrm{O}_{2}$ gas flow | Ringsdorf spectral-pure Carbon calibration used empty crucible and additional charge and $0.24 \% \mathrm{C}$-standard | CGHE/comb.-IR |
| 21 | M: 18 mg (sample 1-3) for day 1 M: 33 mg (sample 4-6) for day 2 | $\mathrm{CaCO}_{3}$ (BAM RS 3) for day 1 <br> $\mathrm{Ba} \mathrm{CO}_{3}$ Merck for day 2 | CGHE/comb.-IR |
| 25 | M: 40 mg ; digestion with leadborate; direct powder analysis $\left(1050^{\circ} \mathrm{C}-3 \mathrm{~min}\right)$ | $\mathrm{CaCO}_{3}$ | CGHE/coul. |
| 26 | M: 22-33 mg; combustion in oxygen atmosphere. IR-detection of $\mathrm{CO}_{2}$ | NIST 112b. SiC and $\mathrm{CaCO}_{3}$ | CGHE/comb.-IR |
| 27 | M: 50.0-51.5 mg; - determination time 50 s ; | M: 109 - $111 \mathrm{mg} \mathrm{BaCO}_{3}$ p.A. ( $6.08 \% \mathrm{C}$ ), Riedel de Haen, LOT No. 12250 | CGHE/comb.-IR |
| 28 | $\mathrm{M}: 30 \mathrm{mg}$; additional charge: <br> 1 g Lecocel II HP; 1 g high pure Iron ships | NBS-Standard 112b; target: $29.43 \pm 0.08 \%$ C-total No traceability! Participant withdrew his values | CGHE/comb.-IR |
| 29 | M: 200 mg ; combustion analysis | BAM standard, steel sample 228-1/1133 (2.05\%C); No traceability! | CGHE/comb. |
| 31 | M: 100 mg additional charge 2 g Sn $\left(1350^{\circ} \mathrm{C} .70 \mathrm{~s}\right)$ | $\begin{aligned} & \mathrm{CaCO}_{3}(99.99 \%) 0.25 \mathrm{~g} \\ & \text { additional charge } 2 \mathrm{a} \mathrm{Sn} \end{aligned}$ | CGHE/comb.-IR |
| 32 | furnace temp. $1050 \pm 30^{\circ} \mathrm{C}$ decomposition with $\mathrm{Pb}\left(\mathrm{BO}_{3}\right)_{2}$ | $\mathrm{CaCO}_{3}$ | CGHE/coul. |
| 33 | M: 100 mg ; additional charge $2 \mathrm{~g} \mathrm{Sn}\left(1350^{\circ} \mathrm{C} 5 \mathrm{~min}\right)$ under $\mathrm{O}_{2}$ gas flow | $\mathrm{CaCO}_{3}$ Merck Standard Reference Material of NIST | CGHE/comb.-IR |
| 36 | M: 20 mg ; additional charge W. Cu | WC - traceable to $\mathrm{CaCO}_{3}$ ZRM BAM | CGHE/Comb.-TC after absorption |

Compilation of sample preparation procedures, calibrations and methods for final determination used in interlaboratory comparison for certification of CRM BAM-S003

| Free carbon |  |  |  |
| :---: | :---: | :---: | :---: |
| Lab- code | Sample preparation ( $M=$ mass of sub-samples) | Calibration | Final determination |
| 5 | combustion in oxygen atmosphere Temp. $800^{\circ} \mathrm{C}$ | $\mathrm{CaCO}_{3}$ | CGHE/comb.-IR |
| 6 | M:200 mg; combustion | PRE Standard 82-15 <br> No traceability; <br> Participant withdrew his values | CGHE/comb.-IR |
| 8 | M: 200-300mg; coulometric determination | $\mathrm{CaCO}_{3}$ | Comb./coul. |
| 9 | no information | $\mathrm{CaCO}_{3}$ | CGHE/comb.-IR |
| 11 | M: 0.5 g ; combustion in oxygen atmosphere. IR-detection of $\mathrm{CO}_{2}$ | $\mathrm{CaCO}_{3}(12 \% \mathrm{C})$ | CGHE/comb.-IR |
| 13 | M: 200 mg ; "combustion" with IRdetection at $850^{\circ} \mathrm{C}$ | $\mathrm{CaCO}_{3}$ oxidation correction Roßberg et al in DKG 69(1992) 251 | CGHE/comb.-IR |
| 15 | M: 0.4-0.7 g; | no calibration; | Comb./coul. |
| 16 | M: 10 mg ; sample mixed with 0.25 g $\mathrm{Pb}_{3} \mathrm{O}_{4}$, heat at $1200^{\circ} \mathrm{C}$ in oxygen ( 150 $\mathrm{m} / \mathrm{min})$, the $\mathrm{CO}_{2}$ was absorbed with a solution ( 500 ml N,N-dimethylformamide $+25 \mathrm{ml} \mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$, then titrate with tetrabutyl ammonium hydroxide solution |  | CGHE/titr. |
| 18 | $\mathrm{M}: 0.25 \mathrm{~g}$ Combustion in quartz boat | NIST 112 b No traceability; | CGHE/comb. |
| 19 | M: $0.5 \mathrm{~g} \mathrm{t:} 750^{\circ} \mathrm{C}$. coulometric determination of carbon | $\begin{aligned} & \text { pure iron (SRM 0.061\% } \\ & \pm 0.002 \% \text { ) } \\ & \hline \end{aligned}$ | Comb./coul. |
| 25 | M: 0.1 g ; no sample digestion ( $1050^{\circ} \mathrm{C}-5 \mathrm{~min}$ ) | $\mathrm{CaCO}_{3}$ | Comb./coul. |
| 26 | M: 0.5 g ; combustion $\rightarrow 850^{\circ} \mathrm{C}$ and weighting return from chip | $\mathrm{CaCO}_{3}$ | Comb./coul. <br> (Appendix 2, method M2) |
|  | $\mathrm{M}: 0.05-0.12 \mathrm{~g}$ wet chemical oxidation $\rightarrow$ coulometric determination; | $\mathrm{CaCO}_{3}$ | Wet chemical oxidation/coul. (Appendix 1, method M1) |
| 28 | M: 0.1 g | $\begin{aligned} & \text { gas calibration with } \mathrm{CO}_{2} \text {. } \\ & \text { target: } 0.3883 \% \mathrm{C} \end{aligned}$ | CGHE/comb.-IR |
| 31 | M $\left.: 0.5 \mathrm{~g} \mathrm{( } 850^{\circ} \mathrm{C} .10 \mathrm{~min}\right)$ | $\mathrm{CaCO}_{3}(99.99 \%) 0.25 \mathrm{~g}$ | CGHE/comb.-IR |
| 32 | furnace temp. $850 \pm 20^{\circ} \mathrm{C} .10 \mathrm{~min}$ DIN 51075-2. DIN 51075-4 | $\mathrm{CaCO}_{3}$ | Comb./coul. (appendix 2, method M2) |
| 33 | $\mathrm{M}: 0.5 \mathrm{~g} ;\left(850^{\circ} \mathrm{C} 10 \mathrm{~min}\right)$ under $\mathrm{O}_{2}$ gas flow | $\mathrm{CaCO}_{3}$ Merck Standard Reference Material of NIST | CGHE/comb.-IR |
| 36 | M: 920 mg ; wet chemical oxidation $\rightarrow$ coulometric determination; | $\mathrm{CaCO}_{3}$ (BAM ZRM RS 3) | Wet chemical oxidation/coul. (appendix 1, method M1) |

Compilation of sample preparation procedures, calibrations and methods for final determination used in interlaboratory comparison for certification of CRM BAM-S003

| Oxygen |  |  |  |
| :---: | :---: | :---: | :---: |
| Lab- code | $\begin{aligned} & \text { Sample preparation } \\ & \text { (M = mass of sub-samples) } \end{aligned}$ | Calibration | Final determination |
| 7 | $\mathrm{M}: 30-70 \mathrm{mg}$; <br> sample into a Pt-capsule (1 g) 1000A | $\mathrm{Gas} / \mathrm{CaCO}_{3}$ | CGHE-IR |
| 12 | M: 25 mg ; used high temperature graphite crucibles, pre-cleaned Ni-Pins, Sncapsules, Power: 5000 W | $300 \mathrm{mg} \mathrm{KNO}_{3}$ solved in 100 ml Water; $100 \mu \mathrm{~g}$ solution weighted in Sn-capsules, dried at $105^{\circ} \mathrm{C}$ ( 6 calibration samples) | CGHE-IR |
| 13 | M: 40 mg ; | $\mathrm{KNO}_{3}$ | CGHE-IR |
| 15 | M: 200 mg ; combustion | LECO STEEL STD. No traceability! | CGHE-IR |
| 18 | M: 88 mg ; oxygen combustion used sample plaed in Ni-basket + Sn | Steel No traceability! | CGHE-IR |
| 19 | M: 50 mg ; with pulse coulometric apparatus for determination of oxygen; heat power:750A,5.5V <br> -Ar carrier gas flow rate: $150 \mathrm{ml} / \mathrm{min}$; heat time: 20 s ; -flux: Ni-Sn; -determination time 100 s | Nb powder ( $0.50 \% \pm 0.02 \%$ ) internal standard Traceability to pure primary substance was checked | CGHE/coul. |
| 20 | M: $30-50 \mathrm{mg}$; SiC into Ni shuck with Sn as additional charge | $\mathrm{ZrO}_{2}$ (pure $99.99 \%$ ) by $1000^{\circ} \mathrm{C}$ glowed | CGHE-IR |
| 21 | $\mathrm{M}: 330 \mathrm{mg}$ into Ni capsules and Ni capsules as a tong | $\mathrm{Fe}_{2} \mathrm{O}_{3} 1 \mathrm{mg}$ to obtain some signal intensity | CGHE-IR |
| 26 | M: 50-100 mg; (ever 3 samples on a day) He-carrier gas $\mathrm{T}_{\text {max }}>2500^{\circ} \mathrm{C}$ | $\mathrm{CaCO}_{3}$ for 1 day CuO for 2 day | CGHE-IR |
| 27 | M: 88-92 mg; | M: $0.41-0.45 \mathrm{mg} \mathrm{CeO}_{2}$ <br> (18.59 \% O) <br> Sigma Aldrich, LOT No. 91K3572 | CGHE-IR |
| 28 | M: 50 mg ; in Pt- capsule | gas calibration with $\mathrm{CO}_{2}$. target: 0.0214\%C | CGHE-IR |
| 29 | M: 200 mg ; | LECO steel standard, <br> Part No. 501-553 <br> No traceability! | CGHE-IR |
| 31 | $\mathrm{M}: 0.05 \mathrm{~g}$ additional charge 0 g Sn ; Ni capsule 0.4 g | $\mathrm{Y}_{2} \mathrm{O}_{3}(99.99 \%) 0.01 \mathrm{~g}$ | CGHE-IR |
| 33 | $\mathrm{M}: 30 \mathrm{mg}$ additional charge $0.7 \mathrm{~g} \mathrm{Sn} .2500-3000^{\circ} \mathrm{C}$ in an induction furnace. oxygen is evaporated as CO gas in He carrier gas | JCRM Si ${ }_{3} \mathrm{~N}_{4}$ Sample R005 (Ceramic Society of Japan) No traceability! | CGHE-IR |
| 35 | M: 18-27 mg; | $\mathrm{Fe}_{2} \mathrm{O}_{3}$, suprapur | CGHE-IR |
| 36 | M: 0.05 g ; Ni/Sn as flux | 0.5 g steel pin Part 501-553 LECO No traceability! | CGHE-IR |
| 37 | M: 90 mg ; (ever 3 samples on a day) instrument parameter: $5300 \mathrm{~W} / 27 \mathrm{~s}$; Sncapsules | $\mathrm{KNO}_{3}$ solution | CGHE-IR |

Compilation of sample preparation procedures, calibrations and methods for final determination used in interlaboratory comparison for certification of CRM BAM-S003

| Nitrogen |  |  |  |
| :---: | :---: | :---: | :---: |
| Labcode | Sample preparation ( $\mathbf{M}=$ mass of sub-samples) | Calibration | Final determination |
| 7 | M: 30-70 mg; sample into a Pt-capsule 1000A | Gas / company-internal standard ( $10 \mu \mathrm{~g} / \mathrm{g} \mathrm{N}$ ) | CGHE-TC |
| 12 | $\mathrm{M}: 100 \mathrm{mg}$; carrier heat gas extraction | Leco standard 501-552 | CGHE-TC |
| 13 | $\mathrm{M}: 40 \mathrm{mg}$; | $\mathrm{KNO}_{3}$ | CGHE-TC |
| 19 | M: 0.5 g ; heat power: 5.0 KW/ 70 s; integral time 45 s; flux Ni | primary $\mathrm{KNO}_{3}$ | CGHE-TC |
| 21 | M: 0.55 g Sn shuck and 800 mg Cu as additional charge | $\mathrm{KNO}_{3}$ | CGHE-TC |
| 26 | M: $50-100 \mathrm{mg}$; (ever 3 samples on a day) He-carrier gas $\mathrm{T}_{\text {max }}>2500^{\circ} \mathrm{C}$ | $\mathrm{NaNO}_{3}$ - solution ; dried in capsule $1 \mathrm{~g} / 100 \mathrm{ml}$ | CGHE-TC |
| 28 | M: 1 g in Pt capsule | gas calibration with $\mathrm{N}_{2}$. target: $0.0 .0458 \% \mathrm{~N}_{2}$ | CGHE-TC |
| 29 | M: 200 mg ; | LECO steel standard, Part No. 501-553 (0.0620\% N) No traceability! | CGHE-TC |
| 35 | M: 18-27 mg; (ever 3 samples on a day) He-carrier gas | $\mathrm{KNO}_{3}$ suprapur | CGHE-TC |
| 36 | $\mathrm{M}: 0.05 \mathrm{~g}$; Ni/Sn as flux | 0.5 g steel pin Part 501-553 Leco 622 ppm N traceable to NIST SRM 885 steel $0.037 \% \mathrm{~N}$ No traceability! | CGHE-TC |
| 37 | M: 90 mg ; (ever 3 samples on a day) instrument parameter: $5300 \mathrm{~W} / 27 \mathrm{~s}$; Sncapsules | $\mathrm{KNO}_{3}$ solution | CGHE-TC |

Compilation of sample preparation procedures, calibrations and methods for final determination used in interlaboratory comparison for certification of CRM BAM-S003

| Free silicon |  |  |  |
| :---: | :---: | :---: | :---: |
| Labcode | Sample preparation | Calibration | Final determination |
| 6 | M: 2 g; (DIN 51075/4) |  | volumetry |
| 8 | M: 4.0 g (DIN 51075/4) | ESK standard No. 1. SiC-dkl. F180 | volumetry |
| 9 | not detected (DIN 51075/4) |  | volumetry |
| 11 | $\mathrm{M}: 3.0 \mathrm{~g}$; liberation of hydrogen resulting from the attack on silicon by a boiling sodium hydroxide solution |  | volumetry |
| 15 | ANSI B74.15-1992 R 2000 | no information | combustion |
| 16 | $\mathrm{M}: 0.2 \mathrm{~g}$; added $1 \mathrm{ml} 10 \% \mathrm{NaNO}_{3}, 2 \mathrm{ml} \mathrm{HNO} 3$ (1+1) and $2 \mathrm{ml} \mathrm{HF}(1+1)$. Heat at $80-90^{\circ} \mathrm{C}$ for 15 min , add $12 \mathrm{ml} 45 \% \mathrm{AlCl}_{3}$ after cooling, then dilute to 100 ml and filter. Take 10 ml clear solution add $50 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}, 0.1 \mathrm{ml} 0.2 \% \mathrm{p}$ nitrophenol as indicator, add $\mathrm{NH}_{3} . \mathrm{H}_{2} \mathrm{O}$ till it turns yellow, then add $5 \mathrm{ml} \mathrm{HCl}(1+4)$, add 5 ml $10 \%\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \times 4 \mathrm{H}_{2} \mathrm{O}$, after 10 min add 5 $\mathrm{ml} 10 \%$ tartaric acid $1 \mathrm{ml} 10 \% \mathrm{Na}_{2} \mathrm{SO}_{3}$, dilute to 100 ml , then measure. the result should substract the $\mathrm{SiO}_{2}$ (convent to Si ) | $0.5 \mathrm{mg} / \mathrm{ml} \mathrm{SiO}_{2}$ <br> prepare: $0.5 \mathrm{~g} \mathrm{SiO}_{2}$ mixed with 5 g $\mathrm{Na}_{2} \mathrm{CO}_{3}$, fused at $880^{\circ} \mathrm{C}$ for 20 min , leach out with $\mathrm{H}_{2} \mathrm{O}$ and dilute to 1000 ml | MAS |
| 26 | M: 5g | SiC - in house standard | volumetry |
| 32 | DIN ISO 9286: 1998-01 |  | volumetry |
| 33 | M: 1 g ; in glass syringe with $\mathrm{NaOH} \rightarrow$ heat $90 \mathrm{~min} \rightarrow$ hydrogen gas is washed and moved in another syringe $\rightarrow$ the volume is measured | $\mathrm{NaOH} 250 \mathrm{~g} / \mathrm{l}$ special grade (Kanto) | volumetry |


| Free silicon dioxide |  |  |  |
| :---: | :---: | :---: | :---: |
| Labcode | Sample preparation | Calibration | Final determination |
| 6 | $\mathrm{M}: 1.0 \mathrm{~g}$; fuming with HF after than anneal at |  | gravimetry |
| 8 | M:1.7 g; HF-destillation | Merck Si-standard solution | ICP OES |
| 9 | not detected |  | titrimetry (S.-Hinrichs) |
| 16 | M: 0.2 g ; added $1 \mathrm{ml} 10 \% \mathrm{NaCl}, 2 \mathrm{ml} \mathrm{HCl}$ $(1+1)$ and $2 \mathrm{ml} \mathrm{HF}(1+1)$. Heat at $80-90^{\circ} \mathrm{C}$ for 15 min , add $12 \mathrm{ml} 45 \% \mathrm{AICl}_{3}$ after cooling, then dilute to 100 ml and filter. Take 10 ml clear solution add $50 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}, 0.1 \mathrm{ml} 0.2 \% \mathrm{p}$ nitrophenol as indicator, add $\mathrm{NH}_{3} . \mathrm{H}_{2} \mathrm{O}$ till it turns yellow, then add $5 \mathrm{ml} \mathrm{HCl}(1+4)$, add 5 ml $10 \%\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \times 4 \mathrm{H}_{2} \mathrm{O}$, after 10 min add 5 $\mathrm{ml} 10 \%$ tartaric acid $1 \mathrm{ml} 10 \% \mathrm{Na}_{2} \mathrm{SO}_{3}$, dilute to 100 ml | $0.5 \mathrm{mg} / \mathrm{ml} \mathrm{SiO}_{2}$ <br> prepare: $0.5 \mathrm{~g} \mathrm{SiO}_{2}$ mixed with 5 g $\mathrm{Na}_{2} \mathrm{CO}_{3}$, fused at $880^{\circ} \mathrm{C}$ for 20 min , leach out with $\mathrm{H}_{2} \mathrm{O}$ and dilute to 1000 ml | MAS |
| 26 | M:1 g; HF-destillation. $\mathrm{SiF}_{4}$ absorb in diluted NaOH | Certipur Si standard Merck. Si-standard solution Merck | ICP OES |
| 32 | DIN ISO 9286: 1998-01 |  | volumetry |
| 33 | M: 0.2 g ; acid decomposition with $\mathrm{NaCl}-\mathrm{HCl}-\mathrm{HF} \rightarrow$ with $\mathrm{AlCl}_{3}$ to $100 \mathrm{ml} \rightarrow$ $10 \mathrm{ml}+\mathrm{HCl}+\mathrm{H} 2 \mathrm{O}+$ <br> 7-molybdic acid 6-ammonium $\rightarrow 10 \mathrm{~min} \rightarrow$ tartaric acid + ascorbic acid $\rightarrow 100 \mathrm{ml} \rightarrow$ absorbance 650 nm | standard solution: <br> a) Aldrich $1000 \mathrm{mg} / \mathrm{L}$ <br> b) Spex $1000 \mathrm{mg} / \mathrm{L}$ | MAS |

## Appendix 7: Statistical evaluation of all results of interlaboratory comparison for certification of CRM BAM-S003

## Tab. 6a1: Aluminium evaluation in run 1 (values in $\mathrm{mg} / \mathrm{kg}$ )

| Current <br> Lab.number | Lab Abbreviation | Mean <br> $(\mathrm{mg} / \mathrm{kg})$ | STDev | H.W. CI <br> $(95 \%)$ | Sample <br> $\# 1$ | Sample <br> $\# 2$ | Sample <br> $\# 3$ | Sample <br> $\# 4$ | Sample <br> $\# 5$ | Sample <br> $\# 6$ |
| :---: | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| L 1 | 6 F AAS 2,3 | 204,000 | 2,757 | 2,893 | 205,000 | 203,000 | 207,000 | 199,000 | 205,000 | 205,000 |
| L 2 | 4 ETV-ICP OES 2 | 305,267 | 10,768 | 11,300 | 315,900 | 312,400 | 303,000 | 314,400 | 296,400 | 289,500 |
| L 3 | 8 ICP OES 3 | 327,167 | 15,420 | 16,182 | 320,000 | 306,000 | 326,000 | 352,000 | 324,000 | 335,000 |
| L 4 | 25 DCarc-OES 3 | 334,000 | 12,215 | 12,819 | 352,000 | 344,000 | 321,000 | 331,000 | 322,000 | 334,000 |
| L 5 | 19 ICP OES 1 | 345,333 | 4,676 | 4,907 | 343,000 | 344,000 | 354,000 | 347,000 | 343,000 | 341,000 |
| L 6 | 26 ICP OES 3 | 354,267 | 3,000 | 3,149 | 355,300 | 356,900 | 356,800 | 355,500 | 349,700 | 351,400 |
| L 7 | 28 ICP OES 1 | 367,250 | 2,476 | 2,598 | 370,100 | 364,800 | 367,500 | 365,800 | 370,300 | 365,000 |
| L 8 | 23 ET AAS 2 | 371,000 | 14,085 | 14,782 | 384,000 | 375,000 | 390,000 | 361,000 | 356,000 | 360,000 |
| L 9 | 31 ICP OES 3 | 371,333 | 4,926 | 5,170 | 366,000 | 375,000 | 369,000 | 366,000 | 377,000 | 375,000 |
| L 10 | 33 ICP OES 3 | 373,217 | 2,674 | 2,806 | 369,100 | 372,800 | 372,200 | 377,100 | 374,800 | 373,300 |
| L 11 | 22 ICP OES 3 | 376,765 | 2,316 | 2,431 | 372,840 | 376,607 | 378,321 | 375,575 | 379,195 | 378,049 |
| L 12 | 36 DCarc-OES 3 | 377,500 | 16,837 | 17,670 | 374,000 | 397,000 | 371,000 | 355,000 | 370,000 | 398,000 |
| L 13 | 16 ICP OES 3 | 380,500 | 10,968 | 11,510 | 389,000 | 370,000 | 371,000 | 388,000 | 371,000 | 394,000 |
| L 14 | 36 ICP OES 3 | 385,000 | 4,000 | 4,198 | 388,000 | 384,000 | 391,000 | 382,000 | 380,000 | 385,000 |
| L 15 | 27 ICP OES | 392,000 | 15,556 | 139,768 | 403,000 | 381,000 |  |  |  |  |
| L 16 | 24 ICP-MS 2 | 399,483 | 5,110 | 5,258 | 395,000 | 392,500 | 402,700 | 398,400 | 406,000 | 402,300 |
| L 17 | 20 ICP OES 3 | 402,167 | 7,705 | 8,086 | 399,000 | 397,000 | 393,000 | 404,000 | 405,000 | 415,000 |
| L 18 | 12 ICP OES $(2)$ | 402,623 | 1,959 | 2,056 | 400,510 | 404,340 | 405,530 | 401,700 | 402,610 | 401,050 |
| L 19 | 18 ICP OES 3 | 415,333 | 12,044 | 12,640 | 405,000 | 416,000 | 413,000 | 423,000 | 434,000 | 401,000 |


| Range [min..max] | $[199,000 \ldots 434,000]$ |
| ---: | ---: |
|  | Case of No Pooling |
| Mean of means | 362,327 |
| 92,885 |  |
| $9 \%$ H.W. Confidence Interval | 132,188 |
| $95 \%$ H.W. Tolerance Interval | Case of Pooling |
|  | 361,248 |
| 9,000 |  |
| $9 \%$ Mean of All | 105,639 |

Outliers detected by different statistical tests at $a=1 \%$ level and at $a=5 \%$ level.
Abbreviations: $\mathrm{C}=$ Cochran test
D = Dixon test
$\mathrm{G}_{(\mathrm{s})}=$ Grubbs test (single test)
$\mathrm{N}=$ Nalimov t - test
POSSIBILITY TO POOL THE DATA
Snedecor F-test and Bartlett test show that pooling is: Not Allowed

## Diagram of means and 95\% confidence intervals (to Tab. 6a1)



Tab. 6a2: Aluminium accepted results in run 2 (values in $\mathbf{m g} / \mathrm{kg}$ )

| Current <br> Lab.number | Lab Abbreviation | Mean $(\mathrm{mg} / \mathrm{kg})$ | STDev | $\begin{aligned} & \text { H.W. CI } \\ & (95 \%) \end{aligned}$ | Sample \#1 | Sample \#2 | Sample \#3 | Sample \#4 | Sample \#5 | Sample \#6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L 1 | 4 ETV-ICP OES 2 | 305,267 | 10,768 | 11,300 | 315,900 | 312,400 | 303,000 | 314,400 | 296,400 | 289,500 |
| L 2 | 8 ICP OES 3 | 327,167 | 15,420 | 16,182 | 320,000 | 306,000 | 326,000 | 352,000 | 324,000 | 335,000 |
| L 3 | 25 DCarc-OES 3 | 334,000 | 12,215 | 12,819 | 352,000 | 344,000 | 321,000 | 331,000 | 322,000 | 334,000 |
| L 4 | 19 ICP OES 1 | 345,333 | 4,676 | 4,907 | 343,000 | 344,000 | 354,000 | 347,000 | 343,000 | 341,000 |
| L 5 | 26 ICP OES 3 | 354,267 | 3,000 | 3,149 | 355,300 | 356,900 | 356,800 | 355,500 | 349,700 | 351,400 |
| L 6 | 28 ICP OES 1 | 367,250 | 2,476 | 2,598 | 370,100 | 364,800 | 367,500 | 365,800 | 370,300 | 365,000 |
| L 7 | 23 ET AAS 2 | 371,000 | 14,085 | 14,782 | 384,000 | 375,000 | 390,000 | 361,000 | 356,000 | 360,000 |
| L 8 | 31 ICP OES 3 | 371,333 | 4,926 | 5,170 | 366,000 | 375,000 | 369,000 | 366,000 | 377,000 | 375,000 |
| L 9 | 33 ICP OES 3 | 373,217 | 2,674 | 2,806 | 369,100 | 372,800 | 372,200 | 377,100 | 374,800 | 373,300 |
| L 10 | 22 ICP OES 3 | 376,765 | 2,316 | 2,431 | 372,840 | 376,607 | 378,321 | 375,575 | 379,195 | 378,049 |
| L 11 | 36 DCarc-OES 3 | 377,500 | 16,837 | 17,670 | 374,000 | 397,000 | 371,000 | 355,000 | 370,000 | 398,000 |
| L 12 | 16 ICP OES 3 | 380,500 | 10,968 | 11,510 | 389,000 | 370,000 | 371,000 | 388,000 | 371,000 | 394,000 |
| L 13 | 36 ICP OES 3 | 385,000 | 4,000 | 4,198 | 388,000 | 384,000 | 391,000 | 382,000 | 380,000 | 385,000 |
| L 14 | 27 ICP OES | 392,000 | 15,556 | 139,768 | 403,000 | 381,000 |  |  |  |  |
| L 15 | 24 ICP-MS 2 | 399,483 | 5,114 | 5,258 | 395,000 | 392,500 | 402,700 | 398,400 | 406,000 | 402,300 |
| L 16 | 20 ICP OES 3 | 402,167 | 7,705 | 8,086 | 399,000 | 397,000 | 393,000 | 404,000 | 405,000 | 415,000 |
| L 17 | 12 ICP OES (2) | 402,623 | 1,959 | 2,056 | 400,510 | 404,340 | 405,530 | 401,700 | 402,610 | 401,050 |
| L 18 | 18 ICP OES 3 | 415,333 | 12,044 | 12,640 | 405,000 | 416,000 | 413,000 | 423,000 | 434,000 | 401,000 |


| Range [min..max] | [289,500 .. 434,000] |
| ---: | ---: |
|  | Case of No Pooling |
| Mean of means | 371,123 |
| 14,332 |  |
| $95 \%$ H.W. Confidence Interval | 81,245 |
| $95 \%$ H.W. Tolerance Interval | Case of Pooling |
|  | 370,320 |
| Mean of All | 5,758 |
| $95 \%$ H.W. Confidence Interval | 65,938 |

Outliers detected by different statistical tests at $a=1 \%$ level and at $a=5 \%$ level.
Abbreviations:
$C=$ Cochran test
$D=$ Dixon test
$G=$ Grubbs test (single and pair test)
$N=$ Nalimov $t-$ test

POSSIBILITY TO POOL THE DATA
Snedecor F-test and Bartlett test show that pooling is: Not Allowed
Diagram of means and 95\% confidence intervals (to Tab. 6a2)


Tab. 6b1: Boron evaluation in run 1 (values in $\mathbf{m g} / \mathrm{kg}$ )

| Current Lab. number | Lab Abbreviation | $\begin{array}{r} \text { Mean } \\ (\mathrm{mg} / \mathrm{kg}) \end{array}$ | STDev | $\begin{array}{r} \text { H.W. CI } \\ (95 \%) \\ \hline \end{array}$ | Sample \#1 | Sample \#2 | Sample \#3 | Sample \#4 | Sample \#5 | Sample \#6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L 1 | 19 ICP OES 1 | 54,550 | 0,729 | 0,765 | 55,600 | 54,100 | 55,300 | 54,100 | 53,800 | 54,400 |
| L 2 | 26 ICP OES 3 | 55,350 | 2,971 | 3,118 | 53,800 | 57,100 | 56,200 | 52,700 | 52,300 | 60,000 |
| L 3 | 25 DCarc-OES 2 | 61,167 | 2,317 | 2,431 | 64,000 | 58,000 | 59,000 | 62,000 | 63,000 | 61,000 |
| L 4 | 12 ICP OES (2) | 62,038 | 5,813 | 6,101 | 70,790 | 66,560 | 57,950 | 62,900 | 58,430 | 55,600 |
| L 5 | 18 ICP OES | 62,667 | 3,386 | 3,554 | 57,000 | 63,000 | 61,000 | 64,000 | 64,000 | 67,000 |
| L 6 | 36c MAS 3 | 62,750 | 3,948 | 6,281 | 61,000 | 58,000 | 66,000 | 66,000 |  |  |
| L 7 | 31 ICP OES 3 | 63,383 | 0,703 | 0,737 | 63,000 | 64,400 | 63,100 | 62,600 | 63,100 | 64,100 |
| L 8 | 36a ICP OES 3 | 64,633 | 1,294 | 1,358 | 66,800 | 64,300 | 65,400 | 63,200 | 64,400 | 63,700 |
| L 9 | 36d ICP OES 3 | 65,750 | 1,258 | 2,002 | 64,000 | 66,000 | 67,000 | 66,000 |  |  |
| L 10 | 22 ICP OES 3 | 66,162 | 0,231 | 0,242 | 65,781 | 66,108 | 66,368 | 66,046 | 66,377 | 66,289 |
| L 11 | 36e ICP OES 3 | 66,750 | 2,754 | 4,382 | 65,000 | 64,000 | 70,000 | 68,000 |  |  |
| L 12 | 8 ICP OES 3 | 111,500 | 11,811 | 12,395 | 125,000 | 103,000 | 116,000 | 124,000 | 97,000 | 104,000 |
| L 13 | 33 ICP OES 3 | 128,600 | 6,184 | 6,489 | 131,200 | 121,800 | 139,200 | 125,300 | 129,300 | 124,800 |


| Range [min..max] | [52,300 .. 139,200] |
| ---: | ---: |
|  | Case of No Pooling |
| Mean of means | 71,177 |
| 90,462 |  |
| 95 H.W. Confidence Interval | 68,636 |
| $95 \%$ H.W. Tolerance Interval | Case of Pooling |
|  | 71,685 |
| Mean of All | 5,346 |
| $95 \%$ H.W. Confidence Interval | 52,175 |

Outliers detected by different statistical tests at $a=1 \%$ level and at $a=5 \%$ level.
Abbreviations: $\quad \mathrm{C}=$ Cochran test
D = Dixon test
$\mathrm{G}_{(\mathrm{p})}=$ Grubbs test (pair test)
$\mathrm{N}=$ Nalimov t - test
POSSIBILITY TO POOL THE DATA
Snedecor F-test and Bartlett test show that pooling is: Not Allowed
Diagram of means and 95\% confidence intervals (to Tab. 6b1)


Tab. 6b2: Boron accepted results in run 2 (values in $\mathbf{m g} / \mathbf{k g}$ )

| Current <br> Lab. number | Lab Abbreviation | Mean <br> $(\mathrm{mg} / \mathrm{kg})$ | STDev | H.W. CI <br> $(95 \%)$ | Sample <br> $\# 1$ | Sample <br> $\# 2$ | Sample <br> $\# 3$ | Sample <br> $\# 4$ | Sample <br> $\# 5$ | Sample <br> $\# 6$ |
| :---: | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| L 1 | 19 ICP OES 1 | 54,550 | 0,729 | 0,765 | 55,600 | 54,100 | 55,300 | 54,100 | 53,800 | 54,400 |
| L 2 | 26 ICP OES 3 | 55,350 | 2,971 | 3,118 | 53,800 | 57,100 | 56,200 | 52,700 | 52,300 | 60,000 |
| L 3 | 25 DCarc-OES 2 | 61,167 | 2,317 | 2,431 | 64,000 | 58,000 | 59,000 | 62,000 | 63,000 | 61,000 |
| L 4 | 12 ICP OES (2) | 62,038 | 5,813 | 6,101 | 70,790 | 66,560 | 57,950 | 62,900 | 58,430 | 55,600 |
| L 5 | 18 ICP OES | 62,667 | 3,386 | 3,554 | 57,000 | 63,000 | 61,000 | 64,000 | 64,000 | 67,000 |
| L 6 | 36c MAS 3 | 62,750 | 3,948 | 6,281 | 61,000 | 58,000 | 66,000 | 66,000 |  |  |
| L 7 | 31 ICP OES 3 | 63,383 | 0,703 | 0,737 | 63,000 | 64,400 | 63,100 | 62,600 | 63,100 | 64,100 |
| L 8 | 36a ICP OES 3 | 64,633 | 1,294 | 1,358 | 66,800 | 64,300 | 65,400 | 63,200 | 64,400 | 63,700 |
| L 9 | 36d ICP OES 3 | 65,750 | 1,258 | 2,002 | 64,000 | 66,000 | 67,000 | 66,000 |  |  |
| L 10 | 22 ICP OES 3 | 66,162 | 0,231 | 0,242 | 65,781 | 66,108 | 66,368 | 66,046 | 66,377 | 66,289 |
| L 11 | 36e ICP OES 3 | 66,750 | 2,754 | 4,382 | 65,000 | 64,000 | 70,000 | 68,000 |  |  |


| Range [min..max] | [52,300 .. 70,790 ] |
| ---: | ---: |
|  | Case of No Pooling |
| Mean of means | 62,291 |
| 2,715 |  |
| $95 \%$ H.W. Confidence Interval | 13,169 |
| $95 \%$ H.W. Tolerance Interval | Case of Pooling |
|  | 62,012 |
| Mean of All | 1,211 |
| $9 \%$ H.W. Confidence Interval | $10,935,200$ |

Outliers detected by different statistical tests at $a=1 \%$ level and at $a=5 \%$ level.
Abbreviations:
C = Cochran test
D = Dixon test
$\mathrm{G}_{(\mathrm{p})}=$ Grubbs test (pair test)
$\mathrm{N}=$ Nalimov t - test
POSSIBILITY TO POOL THE DATA
Snedecor F-test and Bartlett test show that pooling is: Not Allowed
Diagram of means and 95\% confidence intervals (to Tab. 6b2)


Tab. 6c1: Calcium evaluation in run 1 (values in $\mathrm{mg} / \mathrm{kg}$ )

| Current <br> Lab.number | Lab Abbreviation | $\begin{array}{r} \text { Mean } \\ (\mathrm{mg} / \mathrm{kg}) \end{array}$ | STDev | $\begin{aligned} & \text { H.W. CI } \\ & (95 \%) \end{aligned}$ | Sample \#1 | Sample \#2 | Sample \#3 | Sample \#4 | Sample \#5 | Sample \#6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L 1 | 4 ETV-ICP OES 2 | 21,183 | 1,030 | 1,081 | 22,700 | 21,400 | 21,200 | 19,500 | 20,900 | 21,400 |
| L 2 | 26 ICP OES 3 | 25,433 | 0,922 | 0,968 | 24,800 | 26,800 | 24,100 | 25,800 | 25,700 | 25,400 |
| L 3 | 27 ICP OES | 27,350 | 4,879 | 43,836 | 23,900 | 30,800 |  |  |  |  |
| L 4 | 28 ICP OES 1 | 27,360 | 0,676 | 0,709 | 28,300 | 26,700 | 26,990 | 27,140 | 26,910 | 28,120 |
| L 5 | 23 F AAS 2 | 29,117 | 1,212 | 1,272 | 26,900 | 28,600 | 29,700 | 30,000 | 30,100 | 29,400 |
| L 6 | 19 ICP OES 1 | 29,133 | 1,236 | 1,297 | 29,400 | 30,100 | 30,400 | 29,600 | 28,100 | 27,200 |
| L 7 | 36 ICP OES 3 | 29,133 | 0,937 | 0,984 | 29,800 | 29,600 | 29,100 | 30,200 | 27,700 | 28,400 |
| L 8 | 31 ICP OES 3 | 29,467 | 0,480 | 0,504 | 29,300 | 30,200 | 29,200 | 28,800 | 29,600 | 29,700 |
| L 9 | 12 ICP OES (2) | 29,493 | 0,670 | 0,704 | 28,950 | 29,050 | 30,260 | 28,750 | 30,250 | 29,700 |
| L 10 | 33 ICP OES 3 | 29,780 | 0,908 | 0,952 | 29,360 | 29,630 | 28,520 | 31,290 | 29,920 | 29,960 |
| L 11 | 11 ICP OES (2) | 29,833 | 1,329 | 1,395 | 30,000 | 29,000 | 32,000 | 30,000 | 28,000 | 30,000 |
| L 12 | 22 ICP OES 3 | 30,544 | 0,139 | 0,146 | 30,385 | 30,579 | 30,708 | 30,369 | 30,651 | 30,572 |
| L 13 | 24 ICP-MS 2 | 32,033 | 0,816 | 0,857 | 30,600 | 32,000 | 32,300 | 31,800 | 33,000 | 32,500 |
| L 14 | 18 ICP OES | 32,667 | 0,516 | 0,542 | 32,000 | 33,000 | 33,000 | 32,000 | 33,000 | 33,000 |
| L 15 | 20 ICP OES 2,3 | 35,733 | 3,573 | 8,875 | 34,300 |  | 33,100 |  | 39,800 |  |
| L 16 | 8 ICP OES 3 | 60,783 | 8,618 | 9,044 | 56,900 | 53,400 | 51,500 | 66,600 | 74,200 | 62,100 |
| L 17 | 6 F AAS 2,3 | 69,667 | 2,582 | 2,710 | 72,000 | 67,000 | 72,000 | 72,000 | 67,000 | 68,000 |


| Range [min..max] | [19,500 .. 74,200 ] |
| :---: | :---: |
|  | Case of No Pooling |
| Mean of means | 33,454 |
| 95\% H.W. Confidence Interval | 6,399 |
| 95\% H.W. Tolerance Interval | 35,569 |
|  | Case of Pooling |
| Mean of All | 33,639 |
| 95\% H.W. Confidence Interval | 2,591 |
| 95\% H.W. Tolerance Interval | 28,504 |

Outliers detected by different statistical tests at $a=1 \%$ level and at $a=5 \%$ level.
Abbreviations:

$$
\begin{aligned}
& \mathrm{C}=\text { Cochran test } \\
& \mathrm{D}=\text { Dixon test } \\
& \mathrm{G}_{(\mathrm{p})}=\text { Grubbs test (pair test) } \\
& \mathrm{N}=\text { Nalimov } \mathrm{t} \text { - test }
\end{aligned}
$$

POSSIBILITY TO POOL THE DATA
Snedecor F-test and Bartlett test show that pooling is: Not Allowed

Diagram of means and $95 \%$ confidence intervals (to Tab. 6c1)


Tab. 6c2: Calcium accepted results in run 2 (values in $\mathbf{m g} / \mathrm{kg}$ )

| Current <br> Lab.number | Lab Abbreviation | $\begin{array}{r} \text { Mean } \\ (\mathrm{mg}(\mathrm{~kg}) \end{array}$ | STDev | $\begin{array}{r} \hline \text { H.W. CI } \\ (95 \%) \\ \hline \end{array}$ | Sample \#1 | Sample \#2 | $\begin{array}{r} \text { Sample } \\ \# 3 \\ \hline \end{array}$ | Sample \#4 | Sample \#5 | Sample \#6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L 1 | 4 ETV-ICP OES 2 | 21,183 | 1,030 | 1,081 | 22,700 | 21,400 | 21,200 | 19,500 | 20,900 | 21,400 |
| L 2 | 26 ICP OES 3 | 25,433 | 0,922 | 0,968 | 24,800 | 26,800 | 24,100 | 25,800 | 25,700 | 25,400 |
| L 3 | 28 ICP OES 1 | 27,360 | 0,676 | 0,709 | 28,300 | 26,700 | 26,990 | 27,140 | 26,910 | 28,120 |
| L 4 | 23 F AAS 2 | 29,117 | 1,212 | 1,272 | 26,900 | 28,600 | 29,700 | 30,000 | 30,100 | 29,400 |
| L 5 | 19 ICP OES 1 | 29,133 | 1,236 | 1,297 | 29,400 | 30,100 | 30,400 | 29,600 | 28,100 | 27,200 |
| L 6 | 36 ICP OES 3 | 29,133 | 0,937 | 0,984 | 29,800 | 29,600 | 29,100 | 30,200 | 27,700 | 28,400 |
| L 7 | 31 ICP OES 3 | 29,467 | 0,480 | 0,504 | 29,300 | 30,200 | 29,200 | 28,800 | 29,600 | 29,700 |
| L 8 | 12 ICP OES 2 | 29,493 | 0,670 | 0,704 | 28,950 | 29,050 | 30,260 | 28,750 | 30,250 | 29,700 |
| L 9 | 33 ICP OES 3 | 29,780 | 0,908 | 0,952 | 29,360 | 29,630 | 28,520 | 31,290 | 29,920 | 29,960 |
| L 10 | 11 ICP OES (2) | 29,833 | 1,329 | 1,395 | 30,000 | 29,000 | 32,000 | 30,000 | 28,000 | 30,000 |
| L 11 | 22 ICP OES 3 | 30,544 | 0,139 | 0,146 | 30,385 | 30,579 | 30,708 | 30,369 | 30,651 | 30,572 |
| L 12 | 24 ICP-MS 2 | 32,033 | 0,816 | 0,857 | 30,600 | 32,000 | 32,300 | 31,800 | 33,000 | 32,500 |
| L 13 | 18 ICP OES | 32,667 | 0,516 | 0,542 | 32,000 | 33,000 | 33,000 | 32,000 | 33,000 | 33,000 |
| L 14 | 20 ICP OES 2,3 | 35,733 | 3,573 | 8,875 | 34,300 |  | 33,100 |  | 39,800 |  |


| Range [min..max] | [19,500 .. 39,800] |
| ---: | ---: |
|  | Case of No Pooling |
| Mean of means | 29,351 |
| 1,941 |  |
| $95 \%$ H.W. Confidence Interval | 10,127 |
| $95 \%$ H.W. Tolerance Interval | Case of Pooling |
| 29,114 |  |
| Mean of All | 713 |
| $9 \%$ H.W. Confidence Interval | 7,324 |

Outliers detected by different statistical tests at $a=1 \%$ level and at $a=5 \%$ level.
Abbreviations: $\quad \mathrm{C}=$ Cochran test

$$
\begin{aligned}
& C=\text { Cochran test } \\
& D=\text { Dixon test } \\
& G_{(s)}=\text { Grubbs test (single test) } \\
& N=\text { Nalimov } t-\text { test }
\end{aligned}
$$

POSSIBILITY TO POOL THE DATA
Snedecor F-test and Bartlett test show that pooling is: Not Allowed
Diagram of means and $95 \%$ confidence intervals (to Tab. 6c2)


Tab. 6d1: Chromium evaluation in run 1 (values in $\mathrm{mg} / \mathrm{kg}$ )

| Current <br> Lab.number | Lab Abbreviation | $\begin{array}{r} \text { Mean } \\ (\mathrm{mg} / \mathrm{kg}) \end{array}$ | STDev | $\begin{array}{r} \hline \text { H.W. CI } \\ (95 \%) \\ \hline \end{array}$ | Sample \#1 | Sample \#2 | Sample \#3 | Sample \#4 | Sample \#5 | Sample \#6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L 1 | 11 ICP OES (1) | 2,500 | 0,837 | 0,878 | 3,000 | 3,000 | 3,000 | 3,000 | 1,000 | 2,000 |
| L 2 | 36 DCarc-OES 3 | 2,550 | 0,771 | 0,809 | 1,600 | 2,500 | 2,800 | 3,400 | 1,700 | 3,300 |
| L 3 | 4 ETV-ICP OES 2 | 2,567 | 0,969 | 1,017 | 4,320 | 2,860 | 2,430 | 1,860 | 2,350 | 1,580 |
| L 4 | 20 ICP OES 2 | 3,238 | 0,300 | 0,314 | 3,580 | 3,260 | 3,570 | 3,070 | 3,140 | 2,810 |
| L 5 | $2 \mathrm{~K}_{0}$-INNA 3 | 3,348 | 0,076 | 0,080 | 3,454 | 3,386 | 3,222 | 3,331 | 3,345 | 3,348 |
| L 6 | 16 ICP OES (3) | 3,400 | 0,276 | 0,289 | 3,500 | 3,100 | 3,200 | 3,800 | 3,200 | 3,600 |
| L 7 | 35 INAA 2 | 3,418 | 0,066 | 0,070 | 3,350 | 3,360 | 3,380 | 3,440 | 3,460 | 3,520 |
| L 8 | 24 ICP-MS 2 | 3,478 | 0,073 | 0,077 | 3,390 | 3,420 | 3,440 | 3,510 | 3,530 | 3,580 |
| L 9 | 23 ET AAS 2 | 3,495 | 0,136 | 0,142 | 3,430 | 3,400 | 3,480 | 3,340 | 3,670 | 3,650 |
| L 10 | 1 INAA (2) | 3,573 | 0,073 | 0,077 | 3,585 | 3,672 | 3,491 | 3,637 | 3,496 | 3,558 |
| L 11 | 33 ICP OES 3 | 3,628 | 0,277 | 0,291 | 3,350 | 3,310 | 4,050 | 3,660 | 3,610 | 3,790 |
| L 12 | 31 ICP OES 3 | 3,948 | 0,215 | 0,225 | 3,890 | 4,020 | 3,830 | 4,220 | 3,620 | 4,110 |
| L 13 | 36 ICP OES 3 | 3,950 | 0,105 | 0,110 | 4,000 | 3,800 | 3,900 | 4,000 | 3,900 | 4,100 |
| L 14 | 26 ICP OES 3 | 4,077 | 0,379 | 0,397 | 4,700 | 4,360 | 3,990 | 3,850 | 3,700 | 3,860 |
| L 15 | 28 ICP OES 1 | 4,190 | 0,253 | 0,265 | 3,910 | 4,347 | 4,393 | 3,881 | 4,468 | 4,141 |
| L 16 | 13 ET AAS 1 | 4,418 | 0,270 | 0,283 | 4,460 | 4,770 | 4,360 | 4,140 | 4,670 | 4,110 |
| L 17 | 19 ICP OES 1 | 5,688 | 1,033 | 1,084 | 5,010 | 4,860 | 7,040 | 6,210 | 4,500 | 6,510 |


| Range [min..max] | [ 1,000 .. 7,040 ] |
| :---: | :---: |
|  | Case of No Pooling |
| Mean of means | 3,616 |
| 95\% H.W. Confidence Interval | 0,397 |
| 95\% H.W. Tolerance Interval | 2,205 |
|  | Case of Pooling |
| Mean of All | 3,616 |
| 95\% H.W. Confidence Interval | 0,171 |
| 95\% H.W. Tolerance Interval | 1,944 |

Outliers detected by different statistical tests at $a=1 \%$ level and at $a=5 \%$ level.
Abbreviations:
C = Cochran test
D = Dixon test
$\mathrm{G}_{(\mathrm{s})}=$ Grubbs test (single test)
$\mathrm{N}=$ Nalimov t - test
POSSIBILITY TO POOL THE DATA
Snedecor F-test and Bartlett test show that pooling is: Not Allowed
Diagram of means and 95\% confidence intervals (to Tab. 6d1)


Tab. 6d2: Chromium accepted results in run 2 (values in $\mathbf{m g} / \mathrm{kg}$ )

| Current <br> Lab.number | Lab Abbreviation | Mean <br> $(\mathrm{mg} / \mathrm{kg})$ | STDev | H.W. CI <br> $(95 \%)$ | Sample <br> $\# 1$ | Sample <br> $\# 2$ | Sample <br> $\# 3$ | Sample <br> $\# 4$ | Sample <br> $\# 5$ | Sample <br> $\# 6$ |
| :---: | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| L 1 | 11 ICP OES (1) | 2,500 | 0,837 | 0,878 | 3,000 | 3,000 | 3,000 | 3,000 | 1,000 | 2,000 |
| L 2 | 36 DCarc-OES 3 | 2,550 | 0,771 | 0,809 | 1,600 | 2,500 | 2,800 | 3,400 | 1,700 | 3,300 |
| L 3 | 4 ETV-ICP OES 2 | 2,567 | 0,969 | 1,017 | 4,320 | 2,860 | 2,430 | 1,860 | 2,350 | 1,580 |
| L 4 | 20 ICP OES 2 | 3,238 | 0,300 | 0,314 | 3,580 | 3,260 | 3,570 | 3,070 | 3,140 | 2,810 |
| L 5 | 2 K-INNA 3 | 3,348 | 0,076 | 0,080 | 3,454 | 3,386 | 3,222 | 3,331 | 3,345 | 3,348 |
| L 6 | 16 ICP OES (3) | 3,400 | 0,276 | 0,289 | 3,500 | 3,100 | 3,200 | 3,800 | 3,200 | 3,600 |
| L 7 | 35 INAA 2 | 3,418 | 0,066 | 0,070 | 3,350 | 3,360 | 3,380 | 3,440 | 3,460 | 3,520 |
| L 8 | 24 ICP-MS 2 | 3,478 | 0,073 | 0,077 | 3,390 | 3,420 | 3,440 | 3,510 | 3,530 | 3,580 |
| L 9 | 23 ET AAS 2 | 3,495 | 0,136 | 0,142 | 3,430 | 3,400 | 3,480 | 3,340 | 3,670 | 3,650 |
| L 10 | 1 INAA (2) | 3,573 | 0,073 | 0,077 | 3,585 | 3,672 | 3,491 | 3,637 | 3,496 | 3,558 |
| L 11 | 33 ICP OES 3 | 3,628 | 0,277 | 0,291 | 3,350 | 3,310 | 4,050 | 3,660 | 3,610 | 3,790 |
| L 12 | 31 ICP OES 3 | 3,948 | 0,215 | 0,225 | 3,890 | 4,020 | 3,830 | 4,220 | 3,620 | 4,110 |
| L13 | 36 ICP OES 3 | 3,950 | 0,105 | 0,110 | 4,000 | 3,800 | 3,900 | 4,000 | 3,900 | 4,100 |
| L 14 | 26 ICP OES 3 | 4,077 | 0,379 | 0,397 | 4,700 | 4,360 | 3,990 | 3,850 | 3,700 | 3,860 |
| L 15 | 28 ICP OES 1 | 4,190 | 0,253 | 0,265 | 3,910 | 4,347 | 4,393 | 3,881 | 4,468 | 4,141 |
| L 16 | 13 ET AAS 1 | 4,418 | 0,270 | 0,283 | 4,460 | 4,770 | 4,360 | 4,140 | 4,670 | 4,110 |


| Range [min..max] | [1,000 .. 4,770] |
| ---: | ---: |
|  | Mean of means |

Outliers detected by different statistical tests at $a=1 \%$ level and at $a=5 \%$ level.
Abbreviations:
C = Cochran test
D = Dixon test
$G=$ Grubbs test (single and pair test)
$\mathrm{N}=$ Nalimov t - test
POSSIBILITY TO POOL THE DATA
Snedecor F-test and Bartlett test show that pooling is: Not Allowed
Diagram of means and $95 \%$ confidence intervals (to Tab. 6d2)


Tab. 6e1: Copper evaluation in run 1 (values in $\mathrm{mg} / \mathrm{kg}$ )

| Current <br> Lab.number | Lab Abbreviation | $\begin{array}{r} \text { Mean } \\ (\mathrm{mg} / \mathrm{kg}) \end{array}$ | STDev | $\begin{array}{r} \hline \text { H.W. Cl } \\ (95 \%) \\ \hline \end{array}$ | Sample \#1 | Sample \#2 | Sample \#3 | Sample \#4 | Sample \#5 | Sample \#6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L 1 | 19 ICP OES 1 | 0,978 | 0,134 | 0,140 | 0,930 | 0,800 | 1,100 | 1,030 | 1,140 | 0,870 |
| L 2 | 22 ICP OES 3 | 1,057 | 0,033 | 0,035 | 1,055 | 1,018 | 1,074 | 1,050 | 1,112 | 1,033 |
| L 3 | 4 ETV-ICP OES 2 | 1,170 | 0,199 | 0,209 | 1,430 | 1,200 | 1,270 | 0,900 | 1,250 | 0,970 |
| L 4 | 23 ET AAS 2 | 1,238 | 0,028 | 0,029 | 1,260 | 1,240 | 1,270 | 1,250 | 1,200 | 1,210 |
| L 5 | 28 ICP OES 1 | 1,265 | 0,042 | 0,044 | 1,318 | 1,219 | 1,310 | 1,274 | 1,233 | 1,236 |
| L 6 | 12 ICP OES (2) | 1,282 | 0,140 | 0,174 | 1,150 | 1,320 | 1,390 | 1,430 |  | 1,120 |
| L 7 | 26 ICP OES 3 | 1,353 | 0,183 | 0,193 | 1,530 | 1,090 | 1,370 | 1,570 | 1,350 | 1,210 |
| L 8 | 33 ICP OES 3 | 1,378 | 0,122 | 0,128 | 1,430 | 1,440 | 1,310 | 1,310 | 1,560 | 1,220 |
| L 9 | 24 ICP-MS 2 | 1,385 | 0,014 | 0,014 | 1,390 | 1,400 | 1,380 | 1,370 | 1,400 | 1,370 |
| L 10 | 31 ICP OES 3 | 1,803 | 0,471 | 0,494 | 2,010 | 1,370 | 2,420 | 1,390 | 1,410 | 2,220 |
| L 11 | 36 DCarc-OES 3 | 2,300 | 0,110 | 0,115 | 2,300 | 2,300 | 2,300 | 2,400 | 2,100 | 2,400 |
| L 12 | 11 ICP OES (1) | 2,500 | 1,761 | 1,848 | 3,000 | 1,000 | 1,000 | 4,000 | 5,000 | 1,000 |
| L 13 | 8 ICP OES 3 | 19,650 | 2,300 | 2,414 | 20,200 | 20,300 | 17,200 | 20,700 | 22,800 | 16,700 |


| Range [min..max] | $[0,800 . .22,800]$ |
| ---: | ---: |
|  | Case of No Pooling |
| Mean of means | 2,874 |
| 3,059 |  |
| $95 \%$ H.W. Confidence Interval | 15,594 |
| $95 \%$ H.W. Tolerance Interval | Case of Pooling |
|  | 2,895 |
| Mean of All | 1,131 |
| $9 \%$ H.W. Confidence Interval | 11,356 |

next page:
Outliers detected by different statistical tests at $a=1 \%$ level and at $a=5 \%$ level.
Abbreviations:
$\mathrm{C}=$ Cochran test
$\mathrm{D}=$ Dixon test
$\mathrm{G}_{(\mathrm{s})}=$ Grubbs test (single test)
$\mathrm{N}=$ Nalimov t - test

POSSIBILITY TO POOL THE DATA
Snedecor F-test and Bartlett test show that pooling is: Not Allowed

Diagram of means and 95\% confidence intervals (to Tab. 6e1)


Tab. 6e2: Copper accepted results in run 2 (values in $\mathrm{mg} / \mathrm{kg}$ )

| Current <br> Lab.number | Lab Abbreviation | Mean <br> $(\mathrm{mg} / \mathrm{kg})$ | STDev | H.W. CI <br> $(95 \%)$ | Sample <br> $\# 1$ | Sample <br> $\# 2$ | Sample <br> $\# 3$ | Sample <br> $\# 4$ | Sample <br> $\# 5$ | Sample <br> $\# 6$ |
| :---: | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| L 1 | 19 ICP OES 1 | 0,978 | 0,134 | 0,140 | 0,930 | 0,800 | 1,100 | 1,030 | 1,140 | 0,870 |
| L 2 | 22 ICP OES 3 | 1,057 | 0,033 | 0,035 | 1,055 | 1,018 | 1,074 | 1,050 | 1,112 | 1,033 |
| L 3 | 4 ETV-ICP OES 2 | 1,170 | 0,199 | 0,209 | 1,430 | 1,200 | 1,270 | 0,900 | 1,250 | 0,970 |
| L 4 | 23 ET AAS 2 | 1,238 | 0,028 | 0,029 | 1,260 | 1,240 | 1,270 | 1,250 | 1,200 | 1,210 |
| L 5 | 28 ICP OES 1 | 1,265 | 0,042 | 0,044 | 1,318 | 1,219 | 1,310 | 1,274 | 1,233 | 1,236 |
| L 6 | 12 ICP OES (2) | 1,282 | 0,140 | 0,174 | 1,150 | 1,320 | 1,390 | 1,430 |  | 1,120 |
| L 7 | 26 ICP OES 3 | 1,353 | 0,183 | 0,193 | 1,530 | 1,090 | 1,370 | 1,570 | 1,350 | 1,210 |
| L 8 | 33 ICP OES 3 | 1,378 | 0,122 | 0,128 | 1,430 | 1,440 | 1,310 | 1,310 | 1,560 | 1,220 |
| L 9 | 24 ICP-MS 2 | 1,385 | 0,014 | 0,014 | 1,390 | 1,400 | 1,380 | 1,370 | 1,400 | 1,370 |
| L 10 | 31 ICP OES 3 | 1,803 | 0,471 | 0,494 | 2,010 | 1,370 | 2,420 | 1,390 | 1,410 | 2,220 |
| L 11 | 36 DCarc-OES 3 | 2,300 | 0,110 | 0,115 | 2,300 | 2,300 | 2,300 | 2,400 | 2,100 | 2,400 |
| L 12 | 11 ICP OES (1) | 2,500 | 1,761 | 1,848 | 3,000 | 1,000 | 1,000 | 4,000 | 5,000 | 1,000 |


| Range [min..max] | $[0,800 \ldots 5,000]$ |
| ---: | ---: |
|  | Mean of means |

next page:
Outliers detected by different statistical tests at $a=1 \%$ level and at $a=5 \%$ level.
Abbreviations: $\mathrm{C}=$ Cochran test
D = Dixon test
$\mathrm{G}_{(\mathrm{p})}=$ Grubbs test (pair test)
$\mathrm{N}=$ Nalimov t - test
POSSIBILITY TO POOL THE DATA
Snedecor F-test and Bartlett test show that pooling is: Not Allowed

Diagram of means and 95\% confidence intervals (to Tab. 6e2)


Tab. 6f1: Iron evaluation in run 1 (values in $\mathrm{mg} / \mathrm{kg}$ )

| Current Lab.number | Lab Abbreviation | $\begin{array}{r} \text { Mean } \\ (\mathrm{mg} / \mathrm{kg}) \end{array}$ | STDev | $\begin{array}{r} \text { H.W. CI } \\ (95 \%) \\ \hline \end{array}$ | Sample \#1 | Sample \#2 | Sample \#3 | Sample \#4 | Sample \#5 | Sample \#6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L 1 | 25 DCarc-OES 3 | 100,500 | 4,764 | 5,000 | 94,000 | 99,000 | 105,000 | 98,000 | 107,000 | 100,000 |
| L 2 | 14 ICP OES 2 | 107,333 | 22,853 | 23,983 | 115,000 | 113,000 | 147,000 | 91,000 | 87,000 | 91,000 |
| L 3 | 22 ICP OES 3 | 130,766 | 1,739 | 1,825 | 131,055 | 129,162 | 133,910 | 129,774 | 131,136 | 129,559 |
| L 4 | 28 ICP OES 1 | 135,000 | 2,880 | 3,022 | 137,000 | 135,500 | 138,900 | 132,000 | 131,400 | 135,200 |
| L 5 | 36 DCarc-OES 3 | 135,333 | 6,282 | 6,593 | 135,000 | 134,000 | 141,000 | 144,000 | 131,000 | 127,000 |
| L 6 | $2 \mathrm{~K}_{0}$-INNA 3 | 136,500 | 1,589 | 1,667 | 136,800 | 136,400 | 133,700 | 138,500 | 136,300 | 137,300 |
| L 7 | 11 ICP OES (2) | 136,500 | 4,416 | 4,634 | 130,000 | 133,000 | 140,000 | 137,000 | 142,000 | 137,000 |
| L 8 | 31 ICP OES 3 | 140,000 | 2,757 | 2,893 | 137,000 | 139,000 | 139,000 | 139,000 | 141,000 | 145,000 |
| L 9 | 23 F AAS 2 | 142,167 | 7,333 | 7,695 | 132,000 | 134,000 | 145,000 | 146,000 | 150,000 | 146,000 |
| L 10 | 19 ICP OES 1 | 142,833 | 14,261 | 14,966 | 143,000 | 129,000 | 134,000 | 151,000 | 167,000 | 133,000 |
| L 11 | 16 ICP OES 3 | 143,167 | 7,705 | 8,086 | 150,000 | 154,000 | 138,000 | 145,000 | 136,000 | 136,000 |
| L 12 | 24 ICP-MS 2 | 146,083 | 2,282 | 2,394 | 143,500 | 144,100 | 145,000 | 147,000 | 147,400 | 149,500 |
| L 13 | 33 ICP OES 3 | 148,767 | 2,994 | 3,142 | 146,500 | 145,300 | 152,600 | 152,200 | 148,100 | 147,900 |
| L 14 | 26 ICP OES 3 | 148,817 | 2,490 | 2,613 | 149,200 | 147,100 | 150,600 | 149,000 | 152,000 | 145,000 |
| L 15 | 36 ICP OES 3 | 149,167 | 1,329 | 1,395 | 150,000 | 148,000 | 151,000 | 148,000 | 148,000 | 150,000 |
| L 16 | 20 ICP OES 3 | 151,833 | 4,167 | 4,373 | 155,000 | 148,000 | 146,000 | 153,000 | 152,000 | 157,000 |
| L 17 | 13 ICP OES 2 | 154,000 | 4,690 | 4,922 | 153,000 | 161,000 | 155,000 | 157,000 | 149,000 | 149,000 |
| L 18 | 18 ICP OES | 154,667 | 8,548 | 8,970 | 146,000 | 151,000 | 155,000 | 153,000 | 152,000 | 171,000 |
| L 19 | 8 ICP OES 3 | 157,667 | 9,543 | 10,015 | 140,000 | 165,000 | 158,000 | 165,000 | 163,000 | 155,000 |
| L 20 | 12 ICP OES (2) | 161,855 | 29,681 | 31,148 | 132,750 | 138,310 | 161,670 | 155,340 | 167,040 | 216,020 |
| L 21 | 27 ICP OES | 163,500 | 4,950 | 44,472 | 160,000 | 167,000 |  |  |  |  |
| L 22 | 4 ETV-ICPOES 2 | 164,050 | 21,266 | 22,317 | 203,400 | 160,400 | 159,900 | 144,300 | 168,700 | 147,600 |
| L 23 | 1 INAA (2) | 173,371 | 4,472 | 4,693 | 177,331 | 169,762 | 178,928 | 175,189 | 167,603 | 171,413 |
| L 24 | 6 Titrimetry 2,3 | 219,667 | 5,715 | 5,998 | 222,000 | 222,000 | 222,000 | 222,000 | 222,000 | 208,000 |


| Range [min..max] | [87,000 .. 222,000] |
| ---: | ---: |
|  | Mean of means |

Outliers detected by different statistical tests at $a=1 \%$ level and at $a=5 \%$ level.
Abbreviations:

> C = Cochran test
> $\mathrm{D}=$ Dixon test
> $\mathrm{G}_{(\mathrm{s})}=$ Grubbs test (single test)
> $\mathrm{N}=$ Nalimov t - test

POSSIBILITY TO POOL THE DATA
Snedecor F-test and Bartlett test show that pooling is: Not Allowed
Diagram of means and 95\% confidence intervals (to Tab. 6f1)


Tab. 6f2: Iron evaluation in run 2 (values in $\mathrm{mg} / \mathrm{kg}$ )

| Current Lab.number | Lab Abbreviation | $\begin{array}{r} \text { Mean } \\ (\mathrm{mg} / \mathrm{kg}) \end{array}$ | STDev | $\begin{array}{r} \hline \text { H.W. Cl } \\ (95 \%) \\ \hline \end{array}$ | Sample \#1 | Sample \#2 | Sample \#3 | Sample \#4 | Sample \#5 | Sample \#6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L 1 | 14 ICP OES 2 | 107,333 | 22,853 | 23,983 | 115,000 | 113,000 | 147,000 | 91,000 | 87,000 | 91,000 |
| L 2 | 22 ICP OES 3 | 130,766 | 1,739 | 1,825 | 131,055 | 129,162 | 133,910 | 129,774 | 131,136 | 129,559 |
| L 3 | 28 ICP OES 1 | 135,000 | 2,880 | 3,022 | 137,000 | 135,500 | 138,900 | 132,000 | 131,400 | 135,200 |
| L 4 | 36 DCarc-OES 3 | 135,333 | 6,282 | 6,593 | 135,000 | 134,000 | 141,000 | 144,000 | 131,000 | 127,000 |
| L 5 | $2 \mathrm{~K}_{0}$-INNA 3 | 136,500 | 1,589 | 1,667 | 136,800 | 136,400 | 133,700 | 138,500 | 136,300 | 137,300 |
| L 6 | 11 ICP OES (2) | 136,500 | 4,416 | 4,634 | 130,000 | 133,000 | 140,000 | 137,000 | 142,000 | 137,000 |
| L 7 | 31 ICP OES 3 | 140,000 | 2,757 | 2,893 | 137,000 | 139,000 | 139,000 | 139,000 | 141,000 | 145,000 |
| L 8 | 23 F AAS 2 | 142,167 | 7,333 | 7,695 | 132,000 | 134,000 | 145,000 | 146,000 | 150,000 | 146,000 |
| L 9 | 19 ICP OES 1 | 142,833 | 14,261 | 14,966 | 143,000 | 129,000 | 134,000 | 151,000 | 167,000 | 133,000 |
| L 10 | 16 ICP OES 3 | 143,167 | 7,705 | 8,086 | 150,000 | 154,000 | 138,000 | 145,000 | 136,000 | 136,000 |
| L 11 | 24 ICP-MS 2 | 146,083 | 2,282 | 2,394 | 143,500 | 144,100 | 145,000 | 147,000 | 147,400 | 149,500 |
| L 12 | 33 ICP OES 3 | 148,767 | 2,994 | 3,142 | 146,500 | 145,300 | 152,600 | 152,200 | 148,100 | 147,900 |
| L 13 | 26 ICP OES 3 | 148,817 | 2,490 | 2,613 | 149,200 | 147,100 | 150,600 | 149,000 | 152,000 | 145,000 |
| L 14 | 36 ICP OES 3 | 149,167 | 1,329 | 1,395 | 150,000 | 148,000 | 151,000 | 148,000 | 148,000 | 150,000 |
| L 15 | 20 ICP OES 3 | 151,833 | 4,167 | 4,373 | 155,000 | 148,000 | 146,000 | 153,000 | 152,000 | 157,000 |
| L 16 | 13 ICP OES 2 | 154,000 | 4,690 | 4,922 | 153,000 | 161,000 | 155,000 | 157,000 | 149,000 | 149,000 |
| L 17 | 18 ICP OES | 154,667 | 8,548 | 8,970 | 146,000 | 151,000 | 155,000 | 153,000 | 152,000 | 171,000 |
| L 18 | 8 ICP OES 3 | 157,667 | 9,543 | 10,015 | 140,000 | 165,000 | 158,000 | 165,000 | 163,000 | 155,000 |
| L 19 | 12 ICP OES (2) | 161,855 | 29,681 | 31,148 | 132,750 | 138,310 | 161,670 | 155,340 | 167,040 | 216,020 |
| L 20 | 27 ICP OES | 163,500 | 4,950 | 44,472 | 160,000 | 167,000 |  |  |  |  |
| L 21 | 4 ETV-ICP OES 2 | 164,050 | 21,266 | 22,317 | 203,400 | 160,400 | 159,900 | 144,300 | 168,700 | 147,600 |
| L 22 | 1 INAA (2) | 173,371 | 4,472 | 4,693 | 177,331 | 169,762 | 178,928 | 175,189 | 167,603 | 171,413 |


| Range [min..max] | [ 87,000 .. 216,020 ] |
| :---: | :---: |
|  | Case of No Pooling |
| Mean of means | 146,517 |
| 95\% H.W. Confidence Interval | 6,250 |
| 95\% H.W. Tolerance Interval | 38,018 |
|  | Case of Pooling |
| Mean of All | 145,986 |
| 95\% H.W. Confidence Interval | 2,960 |
| 95\% H.W. Tolerance Interval | 37,161 |

Outliers detected by different statistical tests at $\mathrm{a}=1 \%$ level and at $\mathrm{a}=5 \%$ level.

```
Abbreviations: \(\quad \mathrm{C}=\) Cochran test
D = Dixon test
\(\mathrm{G}_{(\mathrm{s})}=\) Grubbs test (single test)
\(\mathrm{N}=\) Nalimov t - test
```

POSSIBILITY TO POOL THE DATA
Snedecor F-test and Bartlett test show that pooling is: Not Allowed
Diagram of means and 95\% confidence intervals (to Tab. 6f2)


Tab. 6f3: Iron accepted results in run 3 (values in $\mathbf{m g} / \mathbf{k g}$ )

| Current Lab.number | Lab Abbreviation | $\begin{array}{r} \text { Mean } \\ (\mathrm{mg} / \mathrm{kg}) \end{array}$ | STDev | $\begin{array}{r} \text { H.W. CI } \\ (95 \%) \\ \hline \end{array}$ | Sample \#1 | Sample \#2 | Sample \#3 | Sample \#4 | Sample \#5 | Sample \#6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L 1 | 22 ICP OES 3 | 130,766 | 1,739 | 1,825 | 131,055 | 129,162 | 133,910 | 129,774 | 131,136 | 129,559 |
| L 2 | 28 ICP OES 1 | 135,000 | 2,880 | 3,022 | 137,000 | 135,500 | 138,900 | 132,000 | 131,400 | 135,200 |
| L 3 | 36 DCarc-OES 3 | 135,333 | 6,282 | 6,593 | 135,000 | 134,000 | 141,000 | 144,000 | 131,000 | 127,000 |
| L 4 | $2 \mathrm{~K}_{0}$-INNA 3 | 136,500 | 1,589 | 1,667 | 136,800 | 136,400 | 133,700 | 138,500 | 136,300 | 137,300 |
| L 5 | 11 ICP OES (2) | 136,500 | 4,416 | 4,634 | 130,000 | 133,000 | 140,000 | 137,000 | 142,000 | 137,000 |
| L 6 | 31 ICP OES 3 | 140,000 | 2,757 | 2,893 | 137,000 | 139,000 | 139,000 | 139,000 | 141,000 | 145,000 |
| L 7 | 23 F AAS 2 | 142,167 | 7,333 | 7,695 | 132,000 | 134,000 | 145,000 | 146,000 | 150,000 | 146,000 |
| L 8 | 19 ICP OES 1 | 142,833 | 14,261 | 14,966 | 143,000 | 129,000 | 134,000 | 151,000 | 167,000 | 133,000 |
| L 9 | 16 ICP OES 3 | 143,167 | 7,705 | 8,086 | 150,000 | 154,000 | 138,000 | 145,000 | 136,000 | 136,000 |
| L 10 | 24 ICP-MS 2 | 146,083 | 2,282 | 2,394 | 143,500 | 144,100 | 145,000 | 147,000 | 147,400 | 149,500 |
| L 11 | 33 ICP OES 3 | 148,767 | 2,994 | 3,142 | 146,500 | 145,300 | 152,600 | 152,200 | 148,100 | 147,900 |
| L 12 | 26 ICP OES 3 | 148,817 | 2,490 | 2,613 | 149,200 | 147,100 | 150,600 | 149,000 | 152,000 | 145,000 |
| L 13 | 36 ICP OES 3 | 149,167 | 1,329 | 1,395 | 150,000 | 148,000 | 151,000 | 148,000 | 148,000 | 150,000 |
| L 14 | 20 ICP OES 3 | 151,833 | 4,167 | 4,373 | 155,000 | 148,000 | 146,000 | 153,000 | 152,000 | 157,000 |
| L 15 | 13 ICP OES 2 | 154,000 | 4,690 | 4,922 | 153,000 | 161,000 | 155,000 | 157,000 | 149,000 | 149,000 |
| L 16 | 18 ICP OES | 154,667 | 8,548 | 8,970 | 146,000 | 151,000 | 155,000 | 153,000 | 152,000 | 171,000 |
| L 17 | 8 ICP OES 3 | 157,667 | 9,543 | 10,015 | 140,000 | 165,000 | 158,000 | 165,000 | 163,000 | 155,000 |
| L 18 | 12 ICP OES (2) | 161,855 | 29,681 | 31,148 | 132,750 | 138,310 | 161,670 | 155,340 | 167,040 | 216,020 |
| L 19 | 27 ICP OES | 163,500 | 4,950 | 44,472 | 160,000 | 167,000 |  |  |  |  |
| L 20 | 4 ETV-ICP OES 2 | 164,050 | 21,266 | 22,317 | 203,400 | 160,400 | 159,900 | 144,300 | 168,700 | 147,600 |
| L 21 | 1 INAA (2) | 173,371 | 4,472 | 4,693 | 177,331 | 169,762 | 178,928 | 175,189 | 167,603 | 171,413 |


| Range [min..max] | [127,000 .. 216,020] |
| ---: | ---: |
|  | Mean of means |

Outliers detected by different statistical tests at $a=1 \%$ level and at $a=5 \%$ level.
Abbreviations:

$$
\begin{aligned}
& C=\text { Cochran test } \\
& D=\text { Dixon test } \\
& G=\text { Grubbs test (single and pair test) } \\
& N=\text { Nalimov } t-\text { test }
\end{aligned}
$$

POSSIBILITY TO POOL THE DATA
nedecor F-test and Bartlett test show that pooling is: Not Allowed
Diagram of means and 95\% confidence intervals (to Tab. 6f3)


Tab. 6g1: Magnesium evaluation in run 1 (values in $\mathrm{mg} / \mathrm{kg}$ )

| Current Lab.number | Lab Abbreviation | $\begin{array}{r} \text { Mean } \\ (\mathrm{mg} / \mathrm{kg}) \end{array}$ | STDev | $\begin{aligned} & \text { H.W. CI } \\ & (95 \%) \\ & \hline \end{aligned}$ | Sample \#1 | Sample \#2 | Sample \#3 | Sample \#4 | Sample \#5 | Sample \#6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L 1 | 11 ICP OES (1) | 3,833 | 0,753 | 0,790 | 4,000 | 5,000 | 3,000 | 4,000 | 4,000 | 3,000 |
| L 2 | 19 ICP OES 1 | 5,512 | 0,895 | 0,939 | 7,170 | 4,930 | 5,740 | 4,750 | 4,980 | 5,500 |
| L 3 | 28 ICP OES 1 | 5,807 | 0,171 | 0,180 | 6,012 | 5,632 | 6,016 | 5,643 | 5,779 | 5,758 |
| L 4 | 26 ICP OES 3 | 5,873 | 0,195 | 0,204 | 5,860 | 5,950 | 5,560 | 6,160 | 5,820 | 5,890 |
| L 5 | 36 DCarc-OES 3 | 5,883 | 0,519 | 0,545 | 5,300 | 6,200 | 5,200 | 6,400 | 6,300 | 5,900 |
| L 6 | 13 ICP OES 2 | 6,000 | 0,443 | 0,465 | 6,400 | 6,400 | 5,800 | 6,300 | 5,300 | 5,800 |
| L 7 | 31 ICP OES 3 | 6,013 | 0,074 | 0,078 | 5,910 | 6,090 | 5,990 | 5,950 | 6,080 | 6,060 |
| L 8 | 22 ICP OES 3 | 6,079 | 0,146 | 0,153 | 6,268 | 6,228 | 6,026 | 5,963 | 6,086 | 5,900 |
| L 9 | 23 ET AAS 2 | 6,278 | 0,141 | 0,148 | 6,090 | 6,410 | 6,360 | 6,400 | 6,120 | 6,290 |
| L 10 | 36 ICP OES 3 | 6,283 | 0,488 | 0,512 | 5,900 | 7,100 | 6,200 | 6,400 | 5,700 | 6,400 |
| L 11 | 33 ICP OES 3 | 6,433 | 0,476 | 0,499 | 6,020 | 6,060 | 6,260 | 6,500 | 6,440 | 7,320 |
| L 12 | 4 ETV-ICP OES 2 | 6,463 | 0,481 | 0,505 | 7,270 | 5,930 | 6,470 | 6,700 | 6,080 | 6,330 |
| L 13 | 18 ICP OES | 6,467 | 0,186 | 0,195 | 6,200 | 6,300 | 6,500 | 6,500 | 6,600 | 6,700 |
| L 14 | 12 ICP OES (2) | 6,755 | 0,132 | 0,138 | 6,650 | 6,830 | 6,770 | 6,590 | 6,730 | 6,960 |
| L 15 | 24 ICP-MS 2 | 6,877 | 0,460 | 0,483 | 7,430 | 6,780 | 6,290 | 6,410 | 7,140 | 7,210 |
| L 16 | 20 ICP OES 2 | 8,218 | 2,028 | 2,128 | 7,170 | 7,140 | 5,170 | 9,730 | 10,100 | 10,000 |
| L 17 | 6 F AAS 2,3 | 9,000 | 0,894 | 0,939 | 10,000 | 8,000 | 9,000 | 9,000 | 8,000 | 10,000 |
| L 18 | 14 ICP OES 2 | 10,667 | 12,028 | 12,622 | 11,000 | 10,000 | 34,000 | 2,000 | 3,000 | 4,000 |
| L 19 | 8 ICP OES 3 | 21,317 | 2,122 | 2,227 | 20,400 | 20,200 | 20,300 | 24,500 | 23,400 | 19,100 |


| Range [min..max] | $[2,000 . .34,000]$ |
| ---: | ---: |
|  | Case of No Pooling |
| Mean of means | 7,356 |
| 9,769 |  |
| $9 \%$ H.W. Confidence Interval | 10,219 |
| $95 \%$ H.W. Tolerance Interval | Case of Pooling |
|  | 7,356 |
| Mean of All | 0,826 |
| $95 \%$ H.W. Confidence Interval | 9,852 |

Outliers detected by different statistical tests at $a=1 \%$ level and at $a=5 \%$ level.

| Abbreviations: | $C=$ Cochran test |
| :--- | :--- |
|  | $D=$ Dixon test |
|  | $G_{(p)}=$ Grubbs test (pair test) |
|  | $N=$ Nalimov $t-$ test |

POSSIBILITY TO POOL THE DATA
Snedecor F-test and Bartlett test show that pooling is: Not Allowed

Diagram of means and $95 \%$ confidence intervals (to Tab. 6g1)


Tab. 6g2: Magnesium accepted results in run 2 (values in $\mathrm{mg} / \mathrm{kg}$ )

| Current Lab.number | Lab Abbreviation | $\begin{array}{r} \text { Mean } \\ (\mathrm{mg} / \mathrm{kg}) \end{array}$ | STDev | $\begin{array}{r} \text { H.W. CI } \\ (95 \%) \end{array}$ | Sample \#1 | Sample \#2 | Sample \#3 | Sample \#4 | Sample \#5 | Sample \#6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L 1 | 11 ICP OES (1) | 3,833 | 0,753 | 0,790 | 4,000 | 5,000 | 3,000 | 4,000 | 4,000 | 3,000 |
| L 2 | 19 ICP OES 1 | 5,512 | 0,895 | 0,939 | 7,170 | 4,930 | 5,740 | 4,750 | 4,980 | 5,500 |
| L 3 | 28 ICP OES 1 | 5,807 | 0,171 | 0,180 | 6,012 | 5,632 | 6,016 | 5,643 | 5,779 | 5,758 |
| L 4 | 26 ICP OES 3 | 5,873 | 0,195 | 0,204 | 5,860 | 5,950 | 5,560 | 6,160 | 5,820 | 5,890 |
| L 5 | 36 DCarc-OES 3 | 5,883 | 0,519 | 0,545 | 5,300 | 6,200 | 5,200 | 6,400 | 6,300 | 5,900 |
| L 6 | 13 ICP OES 2 | 6,000 | 0,443 | 0,465 | 6,400 | 6,400 | 5,800 | 6,300 | 5,300 | 5,800 |
| L 7 | 31 ICP OES 3 | 6,013 | 0,074 | 0,078 | 5,910 | 6,090 | 5,990 | 5,950 | 6,080 | 6,060 |
| L 8 | 22 ICP OES 3 | 6,079 | 0,146 | 0,153 | 6,268 | 6,228 | 6,026 | 5,963 | 6,086 | 5,900 |
| L 9 | 23 ET AAS 2 | 6,278 | 0,141 | 0,148 | 6,090 | 6,410 | 6,360 | 6,400 | 6,120 | 6,290 |
| L 10 | 36 ICP OES 3 | 6,283 | 0,488 | 0,512 | 5,900 | 7,100 | 6,200 | 6,400 | 5,700 | 6,400 |
| L 11 | 33 ICP OES 3 | 6,433 | 0,476 | 0,499 | 6,020 | 6,060 | 6,260 | 6,500 | 6,440 | 7,320 |
| L 12 | 4 ETV-ICP OES 2 | 6,463 | 0,481 | 0,505 | 7,270 | 5,930 | 6,470 | 6,700 | 6,080 | 6,330 |
| L 13 | 18 ICP OES | 6,467 | 0,186 | 0,195 | 6,200 | 6,300 | 6,500 | 6,500 | 6,600 | 6,700 |
| L 14 | 12 ICP OES (2) | 6,755 | 0,132 | 0,138 | 6,650 | 6,830 | 6,770 | 6,590 | 6,730 | 6,960 |
| L 15 | 24 ICP-MS 2 | 6,877 | 0,460 | 0,483 | 7,430 | 6,780 | 6,290 | 6,410 | 7,140 | 7,210 |
| L 16 | 20 ICP OES 2 | 8,218 | 2,028 | 2,128 | 7,170 | 7,140 | 5,170 | 9,730 | 10,100 | 10,000 |
| L 17 | 6 F AAS 2,3 | 9,000 | 0,894 | 0,939 | 10,000 | 8,000 | 9,000 | 9,000 | 8,000 | 10,000 |


| Range [min..max] | [3,000 .. 10,100] |
| ---: | ---: |
|  | Case of No Pooling |
| Mean of means | 6,340 |
| 0,561 |  |
| $95 \mathrm{H} . W$ W. Confidence Interval | 3,121 |
| $95 \%$ H.W. Tolerance Interval | Case of Pooling |
|  | 6,340 |
| Mean of All | 0,242 |
| $9 \%$ H.W. Confidence Interval | 2,750 |

Outliers detected by different statistical tests at $a=1 \%$ level and at $a=5 \%$ level.
Abbreviations: $\quad \mathrm{C}=$ Cochran test
D = Dixon test
$\mathrm{G}_{(\mathrm{p})}=$ Grubbs test (pair test)
$\mathrm{N}=$ Nalimov t - test

POSSIBILITY TO POOL THE DATA
Snedecor F-test and Bartlett test show that pooling is: Not Allowed

Diagram of means and $95 \%$ confidence intervals (to Tab. 6g2)


Tab. 6h1: Manganese evaluation in run 1 (values in mg/kg)

| Current Lab. number | Lab Abbreviation | $\begin{array}{r} \text { Mean } \\ (\mathrm{mg} / \mathrm{kg}) \end{array}$ | STDev | $\begin{aligned} & \text { H.W. CI } \\ & (95 \%) \end{aligned}$ | Sample \#1 | Sample \#2 | Sample \#3 | Sample \#4 | Sample \#5 | Sample \#6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L 1 | 11 ICP OES (1) | 1,000 | 0 | 0 | 1,000 | 1,000 | 1,000 | 1,000 | 1,000 | 1,000 |
| L 2 | 26 ICP OES 3 | 1,095 | 0,126 | 0,132 | 1,020 | 1,040 | 1,060 | 1,000 | 1,110 | 1,340 |
| L 3 | 1 INAA 2 | 1,298 | 0,017 | 0,018 | 1,302 | 1,287 | 1,283 | 1,324 | 1,283 | 1,311 |
| L 4 | 28 ICP OES 1 | 1,321 | 0,062 | 0,065 | 1,357 | 1,280 | 1,431 | 1,272 | 1,283 | 1,300 |
| L 5 | $2 \mathrm{~K}_{0}$-INNA 3 | 1,332 | 0,066 | 0,069 | 1,274 | 1,410 | 1,296 | 1,419 | 1,276 | 1,316 |
| L 6 | 23 ET AAS 2 | 1,362 | 0,029 | 0,031 | 1,320 | 1,370 | 1,330 | 1,390 | 1,380 | 1,380 |
| L 7 | 35 INAA 1 | 1,373 | 0,037 | 0,039 | 1,390 | 1,360 | 1,350 | 1,360 | 1,340 | 1,440 |
| L 8 | 33 ICP OES 3 | 1,383 | 0,056 | 0,059 | 1,420 | 1,400 | 1,460 | 1,380 | 1,330 | 1,310 |
| L 9 | 24 ICP-MS 2 | 1,407 | 0,010 | 0,011 | 1,410 | 1,400 | 1,390 | 1,410 | 1,420 | 1,410 |
| L 10 | 36 ICP OES 3 | 1,417 | 0,306 | 0,321 | 1,600 | 1,600 | 0,800 | 1,500 | 1,500 | 1,500 |
| L 11 | 13 ET AAS 1 | 1,472 | 0,053 | 0,056 | 1,410 | 1,470 | 1,500 | 1,460 | 1,430 | 1,560 |
| L 12 | 20 ICP OES 3 | 1,482 | 0,272 | 0,285 | 1,790 | 1,470 | 1,650 | 1,540 | 0,990 | 1,450 |
| L 13 | 31 ICP OES 3 | 1,490 | 0,023 | 0,024 | 1,490 | 1,480 | 1,490 | 1,460 | 1,490 | 1,530 |
| L 14 | 22 ICP OES 3 | 1,530 | 0,034 | 0,036 | 1,582 | 1,557 | 1,531 | 1,506 | 1,516 | 1,490 |
| L 15 | 36 DCarc-OES 3 | 1,717 | 0,214 | 0,224 | 1,900 | 1,600 | 1,500 | 1,500 | 2,000 | 1,800 |
| L 16 | 19 ICP OES 1 | 1,788 | 0,140 | 0,147 | 1,990 | 1,690 | 1,700 | 1,620 | 1,850 | 1,880 |
| L 17 | 4 ETV-ICP OES 2 | 2,027 | 0,126 | 0,132 | 2,150 | 2,030 | 2,200 | 1,980 | 1,900 | 1,900 |
| L 18 | 12 ICP OES (2) | 2,302 | 0,937 | 0,984 | 1,500 | 1,650 | 1,870 | 1,850 | 3,150 | 3,790 |


| Range [min..max] | $[0,800 . .3,790]$ |
| ---: | ---: |
|  | Mean of means |

Outliers detected by different statistical tests at $a=1 \%$ level and at $a=5 \%$ level.
Abbreviations:
$\mathrm{C}=$ Cochran test
$\mathrm{D}=$ Dixon test
$\mathrm{G}_{(\mathrm{p})}=$ Grubbs test (pair test)
$\mathrm{N}=$ Nalimov t - test

POSSIBILITY TO POOL THE DATA
Snedecor F-test and Bartlett test show that pooling is: Not Allowed

Diagram of means and 95\% confidence intervals (to Tab. 6h1)


Tab. 6h2: Manganese accepted results in run 2 (values in $\mathbf{m g} / \mathbf{k g}$ )

| Current Lab. number | Lab Abbreviation | $\begin{array}{r} \text { Mean } \\ (\mathrm{mg} / \mathrm{kg}) \end{array}$ | STDev | $\begin{array}{r} \text { H.W. CI } \\ (95 \%) \end{array}$ | Sample \#1 | Sample \#2 | Sample \#3 | Sample \#4 | Sample \#5 | Sample \#6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L 1 | 11 ICP OES (1) | 1,000 | 0 | 0 | 1,000 | 1,000 | 1,000 | 1,000 | 1,000 | 1,000 |
| L 2 | 26 ICP OES 3 | 1,095 | 0,126 | 0,132 | 1,020 | 1,040 | 1,060 | 1,000 | 1,110 | 1,340 |
| L 3 | 1 INAA 2 | 1,298 | 0,017 | 0,018 | 1,302 | 1,287 | 1,283 | 1,324 | 1,283 | 1,311 |
| L 4 | 28 ICP OES 1 | 1,321 | 0,062 | 0,065 | 1,357 | 1,280 | 1,431 | 1,272 | 1,283 | 1,300 |
| L 5 | $2 \mathrm{~K}_{0}$-INNA 3 | 1,332 | 0,066 | 0,069 | 1,274 | 1,410 | 1,296 | 1,419 | 1,276 | 1,316 |
| L 6 | 23 ET AAS 2 | 1,362 | 0,029 | 0,031 | 1,320 | 1,370 | 1,330 | 1,390 | 1,380 | 1,380 |
| L 7 | 35 INAA 1 | 1,373 | 0,037 | 0,039 | 1,390 | 1,360 | 1,350 | 1,360 | 1,340 | 1,440 |
| L 8 | 33 ICP OES 3 | 1,383 | 0,056 | 0,059 | 1,420 | 1,400 | 1,460 | 1,380 | 1,330 | 1,310 |
| L 9 | 24 ICP-MS 2 | 1,407 | 0,010 | 0,011 | 1,410 | 1,400 | 1,390 | 1,410 | 1,420 | 1,410 |
| L 10 | 36 ICP OES 3 | 1,417 | 0,306 | 0,321 | 1,600 | 1,600 | 0,800 | 1,500 | 1,500 | 1,500 |
| L 11 | 13 ET AAS 1 | 1,472 | 0,053 | 0,056 | 1,410 | 1,470 | 1,500 | 1,460 | 1,430 | 1,560 |
| L 12 | 20 ICP OES 3 | 1,482 | 0,272 | 0,285 | 1,790 | 1,470 | 1,650 | 1,540 | 0,990 | 1,450 |
| L 13 | 31 ICP OES 3 | 1,490 | 0,023 | 0,024 | 1,490 | 1,480 | 1,490 | 1,460 | 1,490 | 1,530 |
| L 14 | 22 ICP OES 3 | 1,530 | 0,034 | 0,036 | 1,582 | 1,557 | 1,531 | 1,506 | 1,516 | 1,490 |
| L 15 | 36 DCarc-OES 3 | 1,717 | 0,214 | 0,224 | 1,900 | 1,600 | 1,500 | 1,500 | 2,000 | 1,800 |
| L 16 | 19 ICP OES 1 | 1,788 | 0,140 | 0,147 | 1,990 | 1,690 | 1,700 | 1,620 | 1,850 | 1,880 |
| L 17 | 4 ETV-ICP OES 2 | 2,027 | 0,126 | 0,132 | 2,150 | 2,030 | 2,200 | 1,980 | 1,900 | 1,900 |


| Range [min..max] | $[0,800$.. 2,200] |
| ---: | ---: |
|  | Mean of means |

Outliers detected by different statistical tests at $a=1 \%$ level and at $a=5 \%$ level.
Abbreviations: $\quad \mathrm{C}=$ Cochran test
D = Dixon test
$\mathrm{G}_{(\mathrm{p})}=$ Grubbs test (pair test)
$\mathrm{N}=$ Nalimov t - test

POSSIBILITY TO POOL THE DATA
Snedecor F-test and Bartlett test show that pooling is: Not Allowed

Diagram of means and 95\% confidence intervals (to Tab. 6h2)


Tab. 6i1: Sodium evaluation in run 1 (values in $\mathrm{mg} / \mathrm{kg}$ )

| Current Lab. number | Lab Abbreviation | $\begin{array}{r} \text { Mean } \\ (\mathrm{mg} / \mathrm{kg}) \end{array}$ | STDev | $\begin{array}{r} \hline \text { H.W. Cl } \\ (95 \%) \\ \hline \end{array}$ | Sample \#1 | Sample \#2 | Sample \#3 | Sample \#4 | Sample \#5 | Sample \#6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L 1 | 4 ETV-ICP OES 2 | 9,282 | 2,448 | 2,570 | 7,900 | 11,980 | 12,370 | 6,060 | 8,400 | 8,980 |
| L 2 | 31 ICP OES 3 | 15,000 | 1,548 | 1,624 | 13,400 | 13,800 | 13,800 | 15,700 | 17,200 | 16,100 |
| L 3 | 22 ICP OES 3 | 15,308 | 0,519 | 0,545 | 15,558 | 15,848 | 15,493 | 14,382 | 15,508 | 15,058 |
| L 4 | 1 INAA 2 | 15,746 | 0,197 | 0,207 | 15,848 | 15,783 | 15,567 | 15,591 | 15,613 | 16,076 |
| L 5 | 23 F AAS 2 | 16,717 | 0,674 | 0,707 | 16,300 | 17,400 | 17,200 | 17,100 | 15,600 | 16,700 |
| L 6 | 28 ICP OES 1 | 17,032 | 0,293 | 0,307 | 17,550 | 17,010 | 17,090 | 16,660 | 16,920 | 16,960 |
| L 7 | 26 F AAS 3 | 17,317 | 0,760 | 0,798 | 18,300 | 17,300 | 16,300 | 16,900 | 18,100 | 17,000 |
| L 8 | 24 ICP-MS 2 | 17,667 | 0,476 | 0,500 | 17,500 | 17,600 | 17,300 | 17,200 | 18,500 | 17,900 |
| L 9 | 35 INAA 2 | 17,800 | 0,486 | 0,510 | 18,100 | 17,300 | 17,400 | 17,600 | 17,800 | 18,600 |
| L 10 | 33 ICP OES 3 | 18,032 | 0,446 | 0,468 | 17,770 | 17,620 | 17,770 | 18,850 | 18,010 | 18,170 |
| L 11 | 36 F AAS (3) | 18,717 | 1,689 | 1,773 | 17,400 | 18,500 | 20,200 | 21,300 | 17,000 | 17,900 |
| L 12 | $2 \mathrm{~K}_{0}$-INNA 3 | 18,765 | 0,518 | 0,543 | 18,105 | 19,410 | 18,505 | 19,313 | 18,832 | 18,424 |
| L 13 | 36 SS ET AAS (3) | 19,067 | 0,418 | 0,439 | 19,400 | 19,000 | 18,900 | 19,100 | 19,600 | 18,400 |
| L 14 | 18 ICP OES | 19,267 | 0,836 | 0,877 | 18,300 | 18,700 | 18,600 | 19,700 | 20,300 | 20,000 |
| L 15 | 19 F AES 1 | 19,417 | 0,665 | 0,697 | 19,000 | 19,500 | 20,500 | 19,500 | 19,500 | 18,500 |
| L 16 | $12 \mathrm{~F} \mathrm{AAS} \mathrm{(2)}$ | 19,517 | 1,214 | 1,274 | 18,100 | 18,000 | 20,500 | 20,900 | 19,900 | 19,700 |
| L 17 | 11 ICP OES (1) | 22,833 | 1,722 | 1,808 | 23,000 | 23,000 | 22,000 | 22,000 | 26,000 | 21,000 |
| L 18 | 20 ICP OES 2 | 23,917 | 6,256 | 6,566 | 15,400 | 21,900 | 27,900 | 18,400 | 29,900 | 30,000 |


| Range [min..max] | $[6,060 \ldots 30,000]$ |
| ---: | ---: |
|  | Mease of No Pooling |
| 17,855 |  |
| 1,557 |  |
| $95 \%$ H.W. Confidence Interval | 8,827 |
| $95 \%$ H.W. Tolerance Interval | Case of Pooling |
|  | 17,855 |
| 10,663 |  |
| $9 \%$ M.W. Confidence Interval | 7,719 |

Outliers detected by different statistical tests at $a=1 \%$ level and at $a=5 \%$ level.
Abbreviations:
$\mathrm{C}=$ Cochran test
$\mathrm{D}=$ Dixon test
$\mathrm{G}_{(\mathrm{ss})}=$ Grubbs test (single test)
$\mathrm{N}=$ Nalimov $\mathrm{t}-$ test

POSSIBILITY TO POOL THE DATA
Snedecor F-test and Bartlett test show that pooling is: Not Allowed

Diagram of means and 95\% confidence intervals (to Tab. 6i1)


Tab. 6 i 2 : Sodium evaluation in run 2 (values in $\mathbf{m g} / \mathrm{kg}$ )

| Current Lab. number | Lab Abbreviation | Mean (mg/kg) | STDev | $\begin{array}{r} \text { H.W. CI } \\ (95 \%) \end{array}$ | Sample \#1 | Sample \#2 | Sample \#3 | Sample \#4 | Sample \#5 | Sample \#6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L 1 | 31 ICP OES 3 | 15,000 | 1,548 | 1,624 | 13,400 | 13,800 | 13,800 | 15,700 | 17,200 | 16,100 |
| L 2 | 22 ICP OES 3 | 15,308 | 0,519 | 0,545 | 15,558 | 15,848 | 15,493 | 14,382 | 15,508 | 15,058 |
| L 3 | 1 INAA 2 | 15,746 | 0,197 | 0,207 | 15,848 | 15,783 | 15,567 | 15,591 | 15,613 | 16,076 |
| L 4 | 23 F AAS 2 | 16,717 | 0,674 | 0,707 | 16,300 | 17,400 | 17,200 | 17,100 | 15,600 | 16,700 |
| L 5 | 28 ICP OES 1 | 17,032 | 0,293 | 0,307 | 17,550 | 17,010 | 17,090 | 16,660 | 16,920 | 16,960 |
| L 6 | 26 F AAS 3 | 17,317 | 0,760 | 0,798 | 18,300 | 17,300 | 16,300 | 16,900 | 18,100 | 17,000 |
| L 7 | 24 ICP-MS 2 | 17,667 | 0,476 | 0,500 | 17,500 | 17,600 | 17,300 | 17,200 | 18,500 | 17,900 |
| L 8 | 35 INAA 2 | 17,800 | 0,486 | 0,510 | 18,100 | 17,300 | 17,400 | 17,600 | 17,800 | 18,600 |
| L 9 | 33 ICP OES 3 | 18,032 | 0,446 | 0,468 | 17,770 | 17,620 | 17,770 | 18,850 | 18,010 | 18,170 |
| L 10 | 36 F AAS (3) | 18,717 | 1,689 | 1,773 | 17,400 | 18,500 | 20,200 | 21,300 | 17,000 | 17,900 |
| L 11 | $2 \mathrm{~K}_{0}$-INNA 3 | 18,765 | 0,518 | 0,543 | 18,105 | 19,410 | 18,505 | 19,313 | 18,832 | 18,424 |
| L 12 | 36 SS ET AAS (3) | 19,067 | 0,418 | 0,439 | 19,400 | 19,000 | 18,900 | 19,100 | 19,600 | 18,400 |
| L 13 | 18 ICP OES | 19,267 | 0,836 | 0,877 | 18,300 | 18,700 | 18,600 | 19,700 | 20,300 | 20,000 |
| L 14 | 19 F AES 1 | 19,417 | 0,665 | 0,697 | 19,000 | 19,500 | 20,500 | 19,500 | 19,500 | 18,500 |
| L 15 | 12 F AAS (2) | 19,517 | 1,214 | 1,274 | 18,100 | 18,000 | 20,500 | 20,900 | 19,900 | 19,700 |
| L 16 | 11 ICP OES (1) | 22,833 | 1,722 | 1,808 | 23,000 | 23,000 | 22,000 | 22,000 | 26,000 | 21,000 |


| Range [min..max] | [13,400 .. 26,000] |
| ---: | ---: |
|  | Case of No Pooling |
| Mean of means | 18,012 |
| $95 \%$ H.W. Confidence Interval | 1,030 |
| 9,611 |  |
| 95 H.W. Tolerance Interval | Mean of All |

Outliers detected by different statistical tests at $a=1 \%$ level and at $a=5 \%$ level.
Abbreviations:
$\mathrm{C}=$ Cochran test
$\mathrm{D}=$ Dixon test
$\mathrm{G}_{(\mathrm{s})}=$ Grubbs test (single test)
$\mathrm{N}=$ Nalimov t - test

POSSIBILITY TO POOL THE DATA
Snedecor F-test and Bartlett test show that pooling is: Not Allowed

Diagram of means and 95\% confidence intervals (to Tab. 6i2)


Tab. 6i3: Sodium accepted results in run 3 (values in $\mathbf{m g} / \mathrm{kg}$ )

| Current Lab. number | Lab Abbreviation | $\begin{array}{r} \text { Mean } \\ (\mathrm{mg} / \mathrm{kg}) \end{array}$ | STDev | $\begin{array}{r} \hline \text { H.W. CI } \\ (95 \%) \\ \hline \end{array}$ | Sample \#1 | Sample \#2 | Sample \#3 | Sample \#4 | Sample \#5 | Sample \#6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L 1 | 31 ICP OES 3 | 15,000 | 1,548 | 1,624 | 13,400 | 13,800 | 13,800 | 15,700 | 17,200 | 16,100 |
| L 2 | 22 ICP OES 3 | 15,308 | 0,519 | 0,545 | 15,558 | 15,848 | 15,493 | 14,382 | 15,508 | 15,058 |
| L 3 | 1 INAA 2 | 15,746 | 0,197 | 0,207 | 15,848 | 15,783 | 15,567 | 15,591 | 15,613 | 16,076 |
| L 4 | 23 F AAS 2 | 16,717 | 0,674 | 0,707 | 16,300 | 17,400 | 17,200 | 17,100 | 15,600 | 16,700 |
| L 5 | 28 ICP OES 1 | 17,032 | 0,293 | 0,307 | 17,550 | 17,010 | 17,090 | 16,660 | 16,920 | 16,960 |
| L 6 | 26 F AAS 3 | 17,317 | 0,760 | 0,798 | 18,300 | 17,300 | 16,300 | 16,900 | 18,100 | 17,000 |
| L 7 | 24 ICP-MS 2 | 17,667 | 0,476 | 0,500 | 17,500 | 17,600 | 17,300 | 17,200 | 18,500 | 17,900 |
| L 8 | 35 INAA 2 | 17,800 | 0,486 | 0,510 | 18,100 | 17,300 | 17,400 | 17,600 | 17,800 | 18,600 |
| L 9 | 33 ICP OES 3 | 18,032 | 0,446 | 0,468 | 17,770 | 17,620 | 17,770 | 18,850 | 18,010 | 18,170 |
| L 10 | 36 F AAS (3) | 18,717 | 1,689 | 1,773 | 17,400 | 18,500 | 20,200 | 21,300 | 17,000 | 17,900 |
| L 11 | $2 \mathrm{~K}_{0}$-INNA 3 | 18,765 | 0,518 | 0,543 | 18,105 | 19,410 | 18,505 | 19,313 | 18,832 | 18,424 |
| L 12 | 36 SS ET AAS (3) | 19,067 | 0,418 | 0,439 | 19,400 | 19,000 | 18,900 | 19,100 | 19,600 | 18,400 |
| L 13 | 18 ICP OES | 19,267 | 0,836 | 0,877 | 18,300 | 18,700 | 18,600 | 19,700 | 20,300 | 20,000 |
| L 14 | 19 F AES 1 | 19,417 | 0,665 | 0,697 | 19,000 | 19,500 | 20,500 | 19,500 | 19,500 | 18,500 |
| L 15 | 12 F AAS (2) | 19,517 | 1,214 | 1,274 | 18,100 | 18,000 | 20,500 | 20,900 | 19,900 | 19,700 |


| Range [min..max] | [13,400 .. 21,300] |
| ---: | ---: |
|  | Mean of means |

Outliers detected by different statistical tests at $a=1 \%$ level and at $a=5 \%$ level.
Abbreviations:

$$
\begin{aligned}
& C=\text { Cochran test } \\
& D=\text { Dixon test } \\
& G=\text { Grubbs test (single and pair test) } \\
& N=\text { Nalimov } t-\text { test }
\end{aligned}
$$

POSSIBILITY TO POOL THE DATA
Snedecor F-test and Bartlett test show that pooling is: Not Allowed

Diagram of means and 95\% confidence intervals (to Tab. 6i3)


Tab. 6j1 : Nickel accepted results in run 1 (values in $\mathbf{m g} / \mathrm{kg}$ )

| Current <br> Lab.number | Lab Abbreviation | $\begin{array}{r} \text { Mean } \\ (\mathrm{mg} / \mathrm{kg}) \end{array}$ | STDev | $\begin{array}{r} \hline \text { H.W. Cl } \\ (95 \%) \\ \hline \end{array}$ | Sample \#1 | Sample \#2 | Sample \#3 | Sample \#4 | Sample \#5 | Sample \#6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L 1 | 4 ETV-ICP OES 2 | 24,100 | 6,466 | 6,785 | 34,000 | 24,600 | 25,400 | 15,400 | 26,400 | 18,800 |
| L 2 | 25 DCarc-OES 3 | 24,167 | 0,753 | 0,790 | 25,000 | 24,000 | 23,000 | 24,000 | 24,000 | 25,000 |
| L 3 | 11 ICP OES (1) | 26,167 | 1,329 | 1,395 | 25,000 | 25,000 | 27,000 | 28,000 | 27,000 | 25,000 |
| L 4 | 31 ICP OES 3 | 28,717 | 0,861 | 0,904 | 28,000 | 27,700 | 28,300 | 28,900 | 29,800 | 29,600 |
| L 5 | 36 DCarc-OES 3 | 29,750 | 1,237 | 1,299 | 28,300 | 29,400 | 30,600 | 31,700 | 29,700 | 28,800 |
| L 6 | 20 ICP OES 3 | 30,483 | 0,685 | 0,719 | 31,200 | 30,100 | 30,000 | 30,200 | 29,900 | 31,500 |
| L 7 | 23 ET AAS 2 | 30,933 | 0,497 | 0,521 | 31,600 | 30,200 | 31,000 | 31,300 | 30,900 | 30,600 |
| L 8 | 19 ICP OES 1 | 30,983 | 2,101 | 2,205 | 28,200 | 33,600 | 31,400 | 29,100 | 32,900 | 30,700 |
| L 9 | 33 ICP OES 3 | 31,115 | 0,237 | 0,249 | 31,240 | 30,920 | 31,530 | 31,090 | 30,910 | 31,000 |
| L 10 | 24 ICP-MS 2 | 31,250 | 0,524 | 0,550 | 32,100 | 30,600 | 31,000 | 31,100 | 31,600 | 31,100 |
| L11 | 22 ICP OES 3 | 31,673 | 0,422 | 0,443 | 31,684 | 31,677 | 31,981 | 30,884 | 32,087 | 31,724 |
| L 12 | 16 ICP OES 3 | 32,167 | 3,251 | 3,411 | 35,000 | 29,000 | 37,000 | 32,000 | 31,000 | 29,000 |
| L 13 | 36 ICP OES 3 | 32,617 | 0,549 | 0,576 | 32,700 | 32,000 | 33,400 | 32,300 | 32,200 | 33,100 |
| L 14 | 13 ICP OES (1) | 33,083 | 2,462 | 2,584 | 35,600 | 33,100 | 36,500 | 31,600 | 30,600 | 31,100 |
| L 15 | $2 \mathrm{~K}_{0}-\mathrm{INNA}$ (3) | 35,185 | 4,266 | 4,477 | 33,660 | 37,300 | 33,350 | 37,540 | 28,520 | 40,740 |
| L 16 | 27 ICP OES | 35,467 | 4,302 | 10,686 | 31,100 | 35,600 | 39,700 |  |  |  |
| L 17 | 18 ICP OES | 36,517 | 4,635 | 4,864 | 29,800 | 35,200 | 39,800 | 40,500 | 32,800 | 41,000 |
| L 18 | 6 F AAS 2,3 | 39,167 | 2,401 | 2,520 | 37,000 | 37,000 | 39,000 | 41,000 | 38,000 | 43,000 |
| L 19 | 28 ICP OES 1 | 39,398 | 8,528 | 8,950 | 28,990 | 32,780 | 41,700 | 34,860 | 49,240 | 48,820 |
| L 20 | 26 ICP OES 3 | 39,417 | 1,216 | 1,276 | 39,600 | 40,900 | 40,800 | 38,500 | 38,600 | 38,100 |
| L21 | 8 ICP OES 3 | 40,450 | 5,871 | 6,161 | 41,400 | 47,400 | 41,800 | 36,900 | 44,400 | 30,800 |
| L 22 | 12 ICP OES (2) | 41,082 | 2,647 | 2,778 | 37,770 | 38,510 | 40,830 | 42,030 | 42,440 | 44,910 |


| Range [min..max] |  | [ 15,400 .. 49,240 ] |
| :---: | :---: | :---: |
|  |  | Case of No Pooling |
| Mean of means |  | 32,904 |
| 95\% H.W. Confidence Interval |  | 2,208 |
| 95\% H.W. Tolerance Interval |  | 13,430 |
|  |  | Case of Pooling |
| Mean of All |  | 32,844 |
| 95\% H.W. Confidence Interval |  | 1,009 |
| 95\% H.W. Tolerance Interval |  | 12,711 |

Outliers detected by different statistical tests at $a=1 \%$ level and at $a=5 \%$ level.

Abbreviations: $\quad$| C | $=$ Cochran test |
| :--- | :--- |
| $\mathrm{D}=$ Dixon test |  |
| G | $=$ Grubbs test (single and pair test) |
| N | $=$ Nalimov $\mathrm{t}-$ test |

POSSIBILITY TO POOL THE DATA
Snedecor F-test and Bartlett test show that pooling is: Not Allowed

Diagram of means and 95\% confidence intervals (to Tab. 6j1)


Tab. 6k1 : Titanium evaluation in run 1 (values in $\mathrm{mg} / \mathrm{kg}$ )

| Current Lab. number | Lab Abbreviation | Mean $(\mathrm{mg} / \mathrm{kg})$ | STDev | $\begin{array}{r} \hline \text { H.W. CI } \\ (95 \%) \\ \hline \end{array}$ | Sample \#1 | Sample \#2 | Sample \#3 | Sample \#4 | Sample \#5 | Sample \#6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L 1 | 25 DCarc-OES 3 | 54,167 | 5,269 | 5,530 | 59,000 | 62,000 | 51,000 | 50,000 | 49,000 | 54,000 |
| L 2 | 14 ICP OES 2 | 67,500 | 24,712 | 25,934 | 44,000 | 43,000 | 48,000 | 90,000 | 89,000 | 91,000 |
| L 3 | 11 ICP OES (1) | 67,667 | 1,966 | 2,064 | 71,000 | 67,000 | 67,000 | 69,000 | 66,000 | 66,000 |
| L 4 | 4 ETV-ICP OES 2 | 69,567 | 4,709 | 4,942 | 71,100 | 66,700 | 63,600 | 66,700 | 76,200 | 73,100 |
| L 5 | 19 ICP OES 1 | 72,133 | 1,167 | 1,225 | 71,300 | 71,000 | 71,500 | 74,200 | 72,500 | 72,300 |
| L 6 | 8 ICP OES 3 | 72,700 | 0,869 | 0,912 | 73,100 | 73,500 | 71,400 | 72,800 | 73,500 | 71,900 |
| L 7 | 28 ICP OES 1 | 74,470 | 0,400 | 0,420 | 74,560 | 74,070 | 74,490 | 75,150 | 74,060 | 74,490 |
| L 8 | 26 ICP OES 3 | 76,500 | 1,324 | 1,389 | 75,800 | 76,700 | 74,200 | 77,800 | 77,500 | 77,000 |
| L 9 | 22 ICP OES 3 | 77,342 | 0,939 | 0,986 | 75,903 | 76,957 | 78,719 | 77,100 | 77,719 | 77,652 |
| L 10 | 13 ICP OES 2 | 77,450 | 2,185 | 2,293 | 80,200 | 77,100 | 79,600 | 77,600 | 74,600 | 75,600 |
| L 11 | 12 ICP OES (2) | 77,462 | 4,468 | 4,689 | 74,990 | 75,580 | 73,580 | 84,050 | 82,180 | 74,390 |
| L 12 | 31 ICP OES 3 | 78,550 | 0,880 | 0,924 | 77,600 | 79,600 | 78,600 | 77,400 | 78,900 | 79,200 |
| L 13 | 24 ICP-MS 2 | 79,433 | 1,138 | 1,194 | 78,700 | 78,500 | 79,000 | 79,700 | 79,100 | 81,600 |
| L 14 | 33 ICP OES 3 | 80,947 | 0,546 | 0,573 | 80,900 | 81,060 | 81,940 | 80,730 | 80,730 | 80,320 |
| L 15 | 16 ICP OES 3 | 82,500 | 2,811 | 2,950 | 86,000 | 80,000 | 80,000 | 81,000 | 82,000 | 86,000 |
| L 16 | 18 ICP OES | 83,000 | 1,265 | 1,327 | 81,000 | 83,000 | 83,000 | 83,000 | 85,000 | 83,000 |
| L 17 | 36 ICP OES 3 | 83,750 | 0,774 | 0,812 | 84,500 | 83,800 | 84,800 | 82,800 | 83,200 | 83,400 |
| L 18 | 27 ICP OES | 84,150 | 0,071 | 0,635 | 84,200 | 84,100 |  |  |  |  |
| L 19 | $2 \mathrm{~K}_{0}$-INNA 3 | 85,070 | 7,910 | 8,301 | 74,140 | 91,030 | 81,860 | 94,230 | 90,200 | 78,960 |
| L 20 | 20 ICP OES 2 | 85,100 | 1,586 | 1,665 | 85,500 | 83,600 | 83,300 | 85,500 | 85,000 | 87,700 |
| L 21 | 36 DCarc-OES 3 | 86,900 | 8,776 | 9,210 | 83,200 | 90,100 | 73,500 | 83,000 | 93,800 | 97,800 |


| Range [min..max] | [ 43,000 .. 97,800] |
| :---: | :---: |
|  | Case of No Pooling |
| Mean of means | 76,969 |
| 95\% H.W. Confidence Interval | 3,554 |
| 95\% H.W. Tolerance Interval | 21,258 |
|  | Case of Pooling |
| Mean of All | 76,734 |
| 95\% H.W. Confidence Interval | 1,736 |
| 95\% H.W. Tolerance Interval | 21,329 |

Outliers detected by different statistical tests at $a=1 \%$ level and at $a=5 \%$ level.
Abbreviations: $\quad \mathrm{C}=$ Cochran test
D = Dixon test
$\mathrm{G}_{(\mathrm{s})}=$ Grubbs test (single test)
$\mathrm{N}=$ Nalimov t - test
POSSIBILITY TO POOL THE DATA
Snedecor F-test and Bartlett test show that pooling is: Not Allowed

## Diagram of means and $95 \%$ confidence intervals (to Tab. 6k1)



Tab. 6k2 : Titanium accepted results in run 2 (values in $\mathbf{m g} / \mathbf{k g}$ )

| Current Lab. number | Lab Abbreviation | $\begin{array}{r} \text { Mean } \\ (\mathrm{mg} / \mathrm{kg}) \end{array}$ | STDev | $\begin{array}{r} \hline \text { H.W. Cl } \\ (95 \%) \\ \hline \end{array}$ | Sample \#1 | Sample \#2 | Sample \#3 | Sample \#4 | Sample \#5 | Sample \#6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L 1 | 11 ICP OES (1) | 67,667 | 1,966 | 2,064 | 71,000 | 67,000 | 67,000 | 69,000 | 66,000 | 66,000 |
| L 2 | 4 ETV-ICP OES 2 | 69,567 | 4,709 | 4,942 | 71,100 | 66,700 | 63,600 | 66,700 | 76,200 | 73,100 |
| L 3 | 19 ICP OES 1 | 72,133 | 1,167 | 1,225 | 71,300 | 71,000 | 71,500 | 74,200 | 72,500 | 72,300 |
| L 4 | 8 ICP OES 3 | 72,700 | 0,869 | 0,912 | 73,100 | 73,500 | 71,400 | 72,800 | 73,500 | 71,900 |
| L 5 | 28 ICP OES 1 | 74,470 | 0,400 | 0,420 | 74,560 | 74,070 | 74,490 | 75,150 | 74,060 | 74,490 |
| L 6 | 26 ICP OES 3 | 76,500 | 1,324 | 1,389 | 75,800 | 76,700 | 74,200 | 77,800 | 77,500 | 77,000 |
| L 7 | 22 ICP OES 3 | 77,342 | 0,939 | 0,986 | 75,903 | 76,957 | 78,719 | 77,100 | 77,719 | 77,652 |
| L 8 | 13 ICP OES 2 | 77,450 | 2,185 | 2,293 | 80,200 | 77,100 | 79,600 | 77,600 | 74,600 | 75,600 |
| L 9 | 12 ICP OES (2) | 77,462 | 4,468 | 4,689 | 74,990 | 75,580 | 73,580 | 84,050 | 82,180 | 74,390 |
| L 10 | 31 ICP OES 3 | 78,550 | 0,880 | 0,924 | 77,600 | 79,600 | 78,600 | 77,400 | 78,900 | 79,200 |
| L 11 | 24 ICP-MS 2 | 79,433 | 1,138 | 1,194 | 78,700 | 78,500 | 79,000 | 79,700 | 79,100 | 81,600 |
| L 12 | 33 ICP OES 3 | 80,947 | 0,546 | 0,573 | 80,900 | 81,060 | 81,940 | 80,730 | 80,730 | 80,320 |
| L 13 | 16 ICP OES 3 | 82,500 | 2,811 | 2,950 | 86,000 | 80,000 | 80,000 | 81,000 | 82,000 | 86,000 |
| L 14 | 18 ICP OES | 83,000 | 1,265 | 1,327 | 81,000 | 83,000 | 83,000 | 83,000 | 85,000 | 83,000 |
| L 15 | 36 ICP OES 3 | 83,750 | 0,774 | 0,812 | 84,500 | 83,800 | 84,800 | 82,800 | 83,200 | 83,400 |
| L 16 | 27 ICP OES | 84,150 | 0,071 | 0,635 | 84,200 | 84,100 |  |  |  |  |
| L 17 | $2 \mathrm{~K}_{0}$-INNA 3 | 85,070 | 7,910 | 8,301 | 74,140 | 91,030 | 81,860 | 94,230 | 90,200 | 78,960 |
| L 18 | 20 ICP OES 2 | 85,100 | 1,586 | 1,665 | 85,500 | 83,600 | 83,300 | 85,500 | 85,000 | 87,700 |
| L 19 | 36 DCarc-OES 3 | 86,900 | 8,776 | 9,210 | 83,200 | 90,100 | 73,500 | 83,000 | 93,800 | 97,800 |


| Range [min..max] | [63,600 .. 97,800] |
| ---: | ---: |
|  | Case of No Pooling |
| Mean of means | 78,668 |
| 2,675 |  |
| $95 \%$ H.W. Confidence Interval | 15,451 |
| $95 \%$ H.W. Tolerance Interval | Mean of All |

Outliers detected by different statistical tests at $a=1 \%$ level and at $a=5 \%$ level.
Abbreviations: $\quad \mathrm{C}=$ Cochran test
$D=$ Dixon test
$\mathrm{G}=$ Grubbs test (single and pair test)
$\mathrm{N}=$ Nalimov t - test
POSSIBILITY TO POOL THE DATA
Snedecor F-test and Bartlett test show that pooling is: Not Allowed

## Diagram of means and 95\% confidence intervals (to Tab. 6k2)



Tab. 6I1: Vanadium evaluation in run 1 (values in $\mathrm{mg} / \mathrm{kg}$ )

| Current Lab. number | Lab Abbreviation | $\begin{array}{r} \text { Mean } \\ (\mathrm{mg} / \mathrm{kg}) \end{array}$ | STDev | $\begin{array}{r} \hline \text { H.W. CI } \\ (95 \%) \\ \hline \end{array}$ | Sample \#1 | Sample \#2 | Sample \#3 | Sample \#4 | Sample \#5 | Sample \#6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L 1 | 4 ETV-ICP OES 2 | 24,817 | 9,015 | 9,461 | 21,400 | 40,100 | 16,700 | 15,800 | 27,300 | 27,600 |
| L 2 | 25 DCarc-OES 3 | 28,833 | 1,472 | 1,545 | 31,000 | 28,000 | 28,000 | 30,000 | 27,000 | 29,000 |
| L 3 | 13 ICP OES (1) | 30,833 | 1,080 | 1,134 | 32,500 | 31,000 | 31,500 | 30,500 | 29,500 | 30,000 |
| L 4 | 16 ICP OES 3 | 36,287 | 1,109 | 1,163 | 34,720 | 35,000 | 37,000 | 37,000 | 37,000 | 37,000 |
| L 5 | 8 ICP OES 3 | 37,000 | 5,707 | 5,989 | 44,300 | 43,700 | 33,900 | 30,200 | 34,500 | 35,400 |
| L 6 | 11 ICP OES (1) | 38,000 | 1,265 | 1,327 | 38,000 | 39,000 | 39,000 | 39,000 | 36,000 | 37,000 |
| L 7 | 27 ICP OES | 39,267 | 3,907 | 9,705 | 38,500 | 35,800 | 43,500 |  |  |  |
| L 8 | 18 ICP OES | 39,667 | 4,965 | 5,211 | 32,300 | 43,000 | 35,400 | 45,000 | 39,300 | 43,000 |
| L 9 | 19 ICP OES 1 | 41,250 | 2,471 | 2,593 | 38,600 | 38,900 | 44,200 | 44,100 | 41,500 | 40,200 |
| L 10 | 28 ICP OES 1 | 41,348 | 5,026 | 5,275 | 48,250 | 44,900 | 36,050 | 43,850 | 36,420 | 38,620 |
| L 11 | 24 ICP-MS 2 | 42,383 | 0,722 | 0,758 | 42,400 | 43,000 | 42,900 | 41,000 | 42,600 | 42,400 |
| L 12 | 12 ICP OES (2) | 42,532 | 1,585 | 1,663 | 43,990 | 42,590 | 43,830 | 43,390 | 41,490 | 39,900 |
| L 13 | 26 ICP OES 3 | 44,383 | 0,458 | 0,481 | 44,500 | 43,900 | 43,900 | 45,100 | 44,300 | 44,600 |
| L 14 | 36 ICP OES 3 | 45,483 | 1,339 | 1,405 | 45,400 | 44,400 | 47,400 | 44,100 | 44,800 | 46,800 |
| L 15 | 31 ICP OES 3 | 45,867 | 1,742 | 1,828 | 48,400 | 46,900 | 43,700 | 45,700 | 44,200 | 46,300 |
| L 16 | 36 DCarc-OES 3 | 46,067 | 2,760 | 2,897 | 47,300 | 48,100 | 43,100 | 42,000 | 47,900 | 48,000 |
| L 17 | $2 \mathrm{~K}_{0}$-INNA 3 | 47,485 | 0,925 | 0,971 | 46,080 | 48,110 | 48,180 | 48,490 | 47,000 | 47,050 |
| L 18 | 20 ICP OES 2 | 48,267 | 1,031 | 1,082 | 47,600 | 49,400 | 47,100 | 47,600 | 48,300 | 49,600 |
| L 19 | 22 ICP OES 3 | 49,925 | 1,846 | 1,937 | 48,966 | 52,036 | 48,011 | 51,327 | 47,897 | 51,311 |


| Range [min..max] | [15,800 ..52,036] |
| ---: | ---: |
|  | Case of No Pooling |
| Mean of means | 40,510 |
| 3,254 |  |
| $95 \%$ H.W. Confidence Interval | 18,797 |
| $95 \%$ H.W. Tolerance Interval | Mean of All |

Outliers detected by different statistical tests at $a=1 \%$ level and at $a=5 \%$ level.
Abbreviations: $\mathrm{C}=$ Cochran test
D = Dixon test
$\mathrm{G}=$ Grubbs test (single and pair test)
$\mathrm{N}=$ Nalimov t - test
POSSIBILITY TO POOL THE DATA
Snedecor F-test and Bartlett test show that pooling is: Not Allowed

Diagram of means and 95\% confidence intervals (to Tab. 611)


Tab. 612: Vanadium accepted results in run 2 (values in $\mathbf{m g} / \mathrm{kg}$ )

| Current Lab. number | Lab Abbreviation | $\begin{array}{r} \text { Mean } \\ (\mathrm{mg} / \mathrm{kg}) \end{array}$ | STDev | $\begin{gathered} \text { H.W. Cl } \\ \hline(95 \%) \end{gathered}$ | Sample \#1 | Sample \#2 | Sample \#3 | Sample \#4 | Sample \#5 | Sample \#6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L 1 | 25 DCarc-OES 3 | 28,833 | 1,472 | 1,545 | 31,000 | 28,000 | 28,000 | 30,000 | 27,000 | 29,000 |
| L 2 | 13 ICP OES (1) | 30,833 | 1,080 | 1,134 | 32,500 | 31,000 | 31,500 | 30,500 | 29,500 | 30,000 |
| L 3 | 16 ICP OES 3 | 36,287 | 1,109 | 1,163 | 34,720 | 35,000 | 37,000 | 37,000 | 37,000 | 37,000 |
| L 4 | 8 ICP OES 3 | 37,000 | 5,707 | 5,989 | 44,300 | 43,700 | 33,900 | 30,200 | 34,500 | 35,400 |
| L 5 | 11 ICP OES (1) | 38,000 | 1,265 | 1,327 | 38,000 | 39,000 | 39,000 | 39,000 | 36,000 | 37,000 |
| L 6 | 27 ICP OES | 39,267 | 3,907 | 9,705 | 38,500 | 35,800 | 43,500 |  |  |  |
| L 7 | 18 ICP OES | 39,667 | 4,965 | 5,211 | 32,300 | 43,000 | 35,400 | 45,000 | 39,300 | 43,000 |
| L 8 | 19 ICP OES 1 | 41,250 | 2,471 | 2,593 | 38,600 | 38,900 | 44,200 | 44,100 | 41,500 | 40,200 |
| L 9 | 28 ICP OES 1 | 41,348 | 5,026 | 5,275 | 48,250 | 44,900 | 36,050 | 43,850 | 36,420 | 38,620 |
| L 10 | 24 ICP-MS 2 | 42,383 | 0,722 | 0,758 | 42,400 | 43,000 | 42,900 | 41,000 | 42,600 | 42,400 |
| L 11 | 12 ICP OES (2) | 42,532 | 1,585 | 1,663 | 43,990 | 42,590 | 43,830 | 43,390 | 41,490 | 39,900 |
| L 12 | 26 ICP OES 3 | 44,383 | 0,458 | 0,481 | 44,500 | 43,900 | 43,900 | 45,100 | 44,300 | 44,600 |
| L 13 | 36 ICP OES 3 | 45,483 | 1,339 | 1,405 | 45,400 | 44,400 | 47,400 | 44,100 | 44,800 | 46,800 |
| L 14 | 31 ICP OES 3 | 45,867 | 1,742 | 1,828 | 48,400 | 46,900 | 43,700 | 45,700 | 44,200 | 46,300 |
| L 15 | 36 DCarc-OES 3 | 46,067 | 2,760 | 2,897 | 47,300 | 48,100 | 43,100 | 42,000 | 47,900 | 48,000 |
| L 16 | $2 \mathrm{~K}_{0}$-INNA 3 | 47,485 | 0,925 | 0,971 | 46,080 | 48,110 | 48,180 | 48,490 | 47,000 | 47,050 |
| L 17 | 20 ICP OES 2 | 48,267 | 1,031 | 1,082 | 47,600 | 49,400 | 47,100 | 47,600 | 48,300 | 49,600 |
| L 18 | 22 ICP OES 3 | 49,925 | 1,846 | 1,937 | 48,966 | 52,036 | 48,011 | 51,327 | 47,897 | 51,311 |


| Range [min..max] | [27,000 ..52,036] |
| ---: | ---: |
|  | Mean of means |

Outliers detected by different statistical tests at $a=1 \%$ level and at $a=5 \%$ level.
Abbreviations: $\quad \mathrm{C}=$ Cochran test
D = Dixon test
$\mathrm{G}=$ Grubbs test (single and pair test)
$\mathrm{N}=$ Nalimov t - test
POSSIBILITY TO POOL THE DATA
Snedecor F-test and Bartlett test show that pooling is: Not Allowed
Diagram of means and 95\% confidence intervals (to Tab. 612)


Tab. 6m1: Zirconium evaluation in run 1 (values in $\mathrm{mg} / \mathrm{kg}$ )

| Current Lab. number | Lab Abbreviation | $\begin{array}{r} \text { Mean } \\ (\mathrm{mg} / \mathrm{kg}) \end{array}$ | STDev | $\begin{array}{r} \text { H.W. CI } \\ (95 \%) \\ \hline \end{array}$ | Sample \#1 | Sample \#2 | Sample \#3 | Sample \#4 | Sample \#5 | Sample \#6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L 1 | 27 ICP OES | 19,100 | 1,602 | 2,549 | 17,000 | 18,800 | 20,700 | 19,900 |  |  |
| L 2 | 19 ICP OES 1 | 21,200 | 0,696 | 0,730 | 21,000 | 21,200 | 20,600 | 21,500 | 20,500 | 22,400 |
| L 3 | 11 ICP OES (1) | 22,000 | 0,894 | 0,939 | 22,000 | 22,000 | 23,000 | 23,000 | 21,000 | 21,000 |
| L 4 | 18 ICP OES | 22,400 | 1,166 | 1,224 | 20,900 | 21,700 | 21,600 | 23,000 | 23,300 | 23,900 |
| L 5 | 26 ICP OES 3 | 22,833 | 0,432 | 0,453 | 23,600 | 22,700 | 22,400 | 22,800 | 22,500 | 23,000 |
| L 6 | 28 ICP OES 1 | 23,175 | 0,250 | 0,263 | 22,930 | 23,100 | 23,470 | 23,440 | 23,230 | 22,880 |
| L 7 | 22 ICP OES 3 | 23,686 | 0,237 | 0,249 | 23,286 | 23,553 | 23,946 | 23,693 | 23,837 | 23,798 |
| L 8 | 12 ICP OES (2) | 23,703 | 1,403 | 1,472 | 22,460 | 22,200 | 23,560 | 23,200 | 25,390 | 25,410 |
| L 9 | 31 ICP OES 3 | 24,317 | 0,560 | 0,588 | 24,500 | 25,000 | 23,900 | 23,700 | 23,900 | 24,900 |
| L 10 | 24 ICP-MS 2 | 25,433 | 0,207 | 0,217 | 25,300 | 25,800 | 25,200 | 25,500 | 25,400 | 25,400 |
| L 11 | $2 \mathrm{~K}_{0}$-INNA 3 | 25,553 | 0,711 | 0,746 | 26,660 | 25,210 | 26,090 | 24,920 | 25,590 | 24,850 |
| L 12 | 33 ICP OES 3 | 25,763 | 0,357 | 0,374 | 25,920 | 26,280 | 25,790 | 25,870 | 25,420 | 25,300 |
| L 13 | 36 ICP OES 3 | 25,950 | 0,266 | 0,280 | 26,200 | 25,800 | 26,300 | 25,600 | 25,800 | 26,000 |
| L 14 | 20 ICP OES 2 | 26,633 | 0,680 | 0,714 | 26,600 | 26,000 | 25,900 | 27,100 | 26,500 | 27,700 |
| L 15 | 36 DCarc-OES 3 | 27,000 | 1,927 | 2,022 | 23,900 | 27,700 | 25,500 | 29,100 | 28,200 | 27,600 |
| L 16 | 13 ICP-MS | 28,683 | 1,151 | 1,208 | 29,100 | 27,500 | 29,600 | 30,100 | 28,600 | 27,200 |
| L 17 | 4 ETV-ICP OES 2 | 29,133 | 3,121 | 3,275 | 34,400 | 28,800 | 30,800 | 25,800 | 26,600 | 28,400 |
| L 18 | 1 INAA | 30,410 | 2,672 | 2,804 | 32,386 | 28,175 | 29,036 | 27,053 | 32,129 | 33,678 |
| L 19 | 8 ICP OES 3 | 30,983 | 3,618 | 3,797 | 37,100 | 33,300 | 29,700 | 29,900 | 28,800 | 27,100 |
| L 20 | 16 ICP OES 3 | 35,000 | 5,657 | 5,936 | 44,000 | 32,000 | 34,000 | 28,000 | 33,000 | 39,000 |


| Range [min..max] | [17,000 .. 44,000] |
| ---: | ---: |
|  | Case of No Pooling |
| Mean of means | 25,648 |
| 1,774 |  |
| $95 \%$ H.W. Confidence Interval | 10,429 |
| $95 \%$ H.W. Tolerance Interval | Case of Pooling |
|  | 25,759 |
| Mean of All | 0,740 |
| $9 \%$ H.W. Confidence Interval | 8,955 |

Outliers detected by different statistical tests at $a=1 \%$ level and at $a=5 \%$ level.
Abbreviations:
C = Cochran test
D = Dixon test
G = Grubbs test (single and pair test)
$\mathrm{N}=$ Nalimov t - test
POSSIBILITY TO POOL THE DATA
Snedecor F-test and Bartlett test show that pooling is: Not Allowed

Diagram of means and $95 \%$ confidence intervals (to Tab. 6m1)


Tab. 6m2: Zirconium accepted results in run 2 (values in $\mathbf{m g} / \mathrm{kg}$ )

| Current Lab. number | Lab Abbreviation | $\begin{array}{r} \text { Mean } \\ (\mathrm{mg} / \mathrm{kg}) \end{array}$ | STDev | $\begin{array}{r} \text { H.W. CI } \\ (95 \%) \\ \hline \end{array}$ | Sample \#1 | Sample \#2 | Sample \#3 | Sample \#4 | Sample \#5 | Sample \#6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L 1 | 27 ICP OES | 19,100 | 1,602 | 2,549 | 17,000 | 18,800 | 20,700 | 19,900 |  |  |
| L 2 | 19 ICP OES 1 | 21,200 | 0,696 | 0,730 | 21,000 | 21,200 | 20,600 | 21,500 | 20,500 | 22,400 |
| L 3 | 11 ICP OES (1) | 22,000 | 0,894 | 0,939 | 22,000 | 22,000 | 23,000 | 23,000 | 21,000 | 21,000 |
| L 4 | 18 ICP OES | 22,400 | 1,166 | 1,224 | 20,900 | 21,700 | 21,600 | 23,000 | 23,300 | 23,900 |
| L 5 | 26 ICP OES 3 | 22,833 | 0,432 | 0,453 | 23,600 | 22,700 | 22,400 | 22,800 | 22,500 | 23,000 |
| L 6 | 28 ICP OES 1 | 23,175 | 0,250 | 0,263 | 22,930 | 23,100 | 23,470 | 23,440 | 23,230 | 22,880 |
| L 7 | 22 ICP OES 3 | 23,686 | 0,237 | 0,249 | 23,286 | 23,553 | 23,946 | 23,693 | 23,837 | 23,798 |
| L 8 | 12 ICP OES (2) | 23,703 | 1,403 | 1,472 | 22,460 | 22,200 | 23,560 | 23,200 | 25,390 | 25,410 |
| L 9 | 31 ICP OES 3 | 24,317 | 0,560 | 0,588 | 24,500 | 25,000 | 23,900 | 23,700 | 23,900 | 24,900 |
| L 10 | 24 ICP-MS 2 | 25,433 | 0,207 | 0,217 | 25,300 | 25,800 | 25,200 | 25,500 | 25,400 | 25,400 |
| L 11 | $2 \mathrm{~K}_{0}$-INNA 3 | 25,553 | 0,711 | 0,746 | 26,660 | 25,210 | 26,090 | 24,920 | 25,590 | 24,850 |
| L 12 | 33 ICP OES 3 | 25,763 | 0,357 | 0,374 | 25,920 | 26,280 | 25,790 | 25,870 | 25,420 | 25,300 |
| L 13 | 36 ICP OES 3 | 25,950 | 0,266 | 0,280 | 26,200 | 25,800 | 26,300 | 25,600 | 25,800 | 26,000 |
| L 14 | 20 ICP OES 2 | 26,633 | 0,680 | 0,714 | 26,600 | 26,000 | 25,900 | 27,100 | 26,500 | 27,700 |
| L 15 | 36 DCarc-OES 3 | 27,000 | 1,927 | 2,022 | 23,900 | 27,700 | 25,500 | 29,100 | 28,200 | 27,600 |
| L 16 | 13 ICP-MS | 28,683 | 1,151 | 1,208 | 29,100 | 27,500 | 29,600 | 30,100 | 28,600 | 27,200 |
| L 17 | 4 ETV-ICP OES 2 | 29,133 | 3,121 | 3,275 | 34,400 | 28,800 | 30,800 | 25,800 | 26,600 | 28,400 |
| L 18 | 1 INAA | 30,410 | 2,672 | 2,804 | 32,386 | 28,175 | 29,036 | 27,053 | 32,129 | 33,678 |
| L 19 | 8 ICP OES 3 | 30,983 | 3,618 | 3,797 | 37,100 | 33,300 | 29,700 | 29,900 | 28,800 | 27,100 |


| Range [min..max] | [17,000 .. 37,100] |
| ---: | ---: |
|  | Case of No Pooling |
| Mean of means | 25,156 |
| 1,528 |  |
| $95 \%$ H.W. Confidence Interval | 8,824 |
| $95 \%$ H.W. Tolerance Interval | Mean of All |

Outliers detected by different statistical tests at $a=1 \%$ level and at $a=5 \%$ level.
Abbreviations: $\quad \mathrm{C}=$ Cochran test
D = Dixon test
$\mathrm{G}=$ Grubbs test (single and pair test)
$\mathrm{N}=$ Nalimov t - test
POSSIBILITY TO POOL THE DATA
Snedecor F-test and Bartlett test show that pooling is: Not Allowed

## Diagram of means and 95\% confidence intervals (to Tab. 6m2)



Tab. 6n1: Total carbon evaluation in run 1 (values in \%)

| Current <br> Lab number | Lab Abbreviation | Mean (\%) | STDev | $\begin{array}{r} \hline \text { H.W. Cl } \\ (95 \%) \\ \hline \end{array}$ | Sample \#1 | Sample \#2 | Sample \#3 | Sample \#4 | Sample \#5 | Sample \#6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L 1 | 27 CGHE/comb.-IR | 29,283 | 0,117 | 0,123 | 29,300 | 29,200 | 29,400 | 29,300 | 29,400 | 29,100 |
| L 2 | 16 CGHE/titr. 3 | 29,367 | 0,197 | 0,206 | 29,300 | 29,300 | 29,200 | 29,500 | 29,200 | 29,700 |
| L 3 | 6 CGHE/comb.-IR 3 | 29,573 | 0,043 | 0,045 | 29,600 | 29,580 | 29,620 | 29,520 | 29,600 | 29,520 |
| L 4 | 7 CGHE/comb.-IR | 29,746 | 0,022 | 0,023 | 29,725 | 29,716 | 29,744 | 29,764 | 29,771 | 29,753 |
| L 5 | $31 \mathrm{CGHE} / \mathrm{comb}$.-IR 3 | 29,817 | 0,041 | 0,043 | 29,900 | 29,800 | 29,800 | 29,800 | 29,800 | 29,800 |
| L 6 | 19 Comb,/grav. 1 | 29,853 | 0,057 | 0,059 | 29,803 | 29,868 | 29,954 | 29,865 | 29,815 | 29,814 |
| L 7 | 9 CGHE/comb.-IR 3 | 29,863 | 0,042 | 0,044 | 29,890 | 29,830 | 29,890 | 29,800 | 29,910 | 29,860 |
| L 8 | $13 \mathrm{CGHE} / \mathrm{comb}$.-IR 2 | 29,865 | 0,279 | 0,293 | 30,150 | 30,110 | 30,020 | 29,640 | 29,450 | 29,820 |
| L 9 | 32 CGHE/comb.-IR 3 | 29,892 | 0,048 | 0,051 | 29,971 | 29,864 | 29,903 | 29,827 | 29,906 | 29,879 |
| L 10 | 5 CGHE/comb.-IR 3 | 29,898 | 0,122 | 0,128 | 29,850 | 29,790 | 30,100 | 29,800 | 29,860 | 29,990 |
| L 11 | 26 CGHE/comb.-IR 3 | 29,912 | 0,021 | 0,022 | 29,880 | 29,910 | 29,940 | 29,930 | 29,900 | 29,910 |
| L 12 | 8 Coul. 3 | 29,913 | 0,064 | 0,068 | 29,860 | 29,850 | 29,860 | 29,940 | 29,980 | 29,990 |
| L 13 | 36 CGHE/comb.-TC 3 | 29,920 | 0,035 | 0,037 | 29,950 | 29,950 | 29,900 | 29,940 | 29,860 | 29,920 |
| L 14 | 21 CGHE/comb.-IR 2 | 29,937 | 0,258 | 0,271 | 30,060 | 30,120 | 30,180 | 30,040 | 29,600 | 29,620 |
| L 15 | $20 \mathrm{CGHE} / \mathrm{comb}$.-IR 3 | 29,943 | 0,045 | 0,047 | 29,880 | 29,980 | 29,900 | 29,980 | 29,940 | 29,980 |
| L 16 | $12 \mathrm{CGHE} / \mathrm{comb} .-\mathrm{TC} \mathrm{(2)}$ | 29,955 | 0,047 | 0,050 | 29,880 | 30,000 | 29,930 | 30,000 | 29,980 | 29,940 |
| L 17 | 11 CGHE/comb.-IR (2) | 29,956 | 0,047 | 0,058 | 29,890 | 29,950 | 30,020 | 29,970 | 29,950 |  |
| L 18 | 33 CGHE/comb.-IR 3 | 30,033 | 0,067 | 0,071 | 29,960 | 29,980 | 30,030 | 30,110 | 30,000 | 30,120 |
| L 19 | 25 Coul. 3 | 30,130 | 0,036 | 0,038 | 30,090 | 30,130 | 30,110 | 30,150 | 30,110 | 30,190 |


| Range [min..max] | [29,100 .. 30,190] |
| ---: | ---: |
|  | Case of No Pooling |
| Mean of means | 29,835 |
|  | 0,102 |
| $95 \%$ H.W. Confidence Interval | 0,589 |
| $95 \%$ H.W. Tolerance Interval | Case of Pooling |
|  | 29,833 |
| Mean of All | 0,043 |
| $9 \%$ H.W. Confidence Interval | 0,514 |

Outliers detected by different statistical tests at $a=1 \%$ level and at $a=5 \%$ level.
Abbreviations:

$$
\begin{aligned}
& C=\text { Cochran test } \\
& D=\text { Dixon test } \\
& G_{(p)}=\text { Grubbs test (pair test) } \\
& N=\text { Nalimov } t-\text { test }
\end{aligned}
$$

POSSIBILITY TO POOL THE DATA
Snedecor F-test and Bartlett test show that pooling is: Not Allowed
Diagram of means and $95 \%$ confidence intervals (to Tab. 6n1)


Tab. 6n2: Total carbon accepted results in run 2 (values in \%)

| Current <br> Lab number | Lab Abbreviation | Mean (\%) | STDev | $\begin{array}{r} \hline \text { H.W. CI } \\ (95 \%) \end{array}$ | Sample \#1 | Sample \#2 | Sample \#3 | Sample \#4 | Sample \#5 | Sample \#6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L 1 | 6 CGHE/comb.-IR 3 | 29,573 | 0,043 | 0,045 | 29,600 | 29,580 | 29,620 | 29,520 | 29,600 | 29,520 |
| L 2 | 7 CGHE/comb.-IR | 29,746 | 0,022 | 0,023 | 29,725 | 29,716 | 29,744 | 29,764 | 29,771 | 29,753 |
| L 3 | 31 CGHE/comb.-IR 3 | 29,817 | 0,041 | 0,043 | 29,900 | 29,800 | 29,800 | 29,800 | 29,800 | 29,800 |
| L 4 | 19 comb,/grav. 1 | 29,853 | 0,057 | 0,059 | 29,803 | 29,868 | 29,954 | 29,865 | 29,815 | 29,814 |
| L 5 | 9 CGHE/comb.-IR 3 | 29,863 | 0,042 | 0,044 | 29,890 | 29,830 | 29,890 | 29,800 | 29,910 | 29,860 |
| L 6 | $13 \mathrm{CGHE} / \mathrm{comb}$.-IR 2 | 29,865 | 0,279 | 0,293 | 30,150 | 30,110 | 30,020 | 29,640 | 29,450 | 29,820 |
| L 7 | $32 \mathrm{CGHE} / \mathrm{comb}$.-IR 3 | 29,892 | 0,048 | 0,051 | 29,971 | 29,864 | 29,903 | 29,827 | 29,906 | 29,879 |
| L 8 | 5 CGHE/comb.-IR 3 | 29,898 | 0,122 | 0,128 | 29,850 | 29,790 | 30,100 | 29,800 | 29,860 | 29,990 |
| L 9 | 26 CGHE/comb.-IR 3 | 29,912 | 0,021 | 0,022 | 29,880 | 29,910 | 29,940 | 29,930 | 29,900 | 29,910 |
| L 10 | 8 Comb./coul. 3 | 29,913 | 0,064 | 0,068 | 29,860 | 29,850 | 29,860 | 29,940 | 29,980 | 29,990 |
| L 11 | 36 CGHE/comb.-TC 3 | 29,920 | 0,035 | 0,037 | 29,950 | 29,950 | 29,900 | 29,940 | 29,860 | 29,920 |
| L 12 | 21 CGHE/comb.-IR 2 | 29,937 | 0,258 | 0,271 | 30,060 | 30,120 | 30,180 | 30,040 | 29,600 | 29,620 |
| L 13 | $20 \mathrm{CGHE} / \mathrm{comb}$.-IR 3 | 29,943 | 0,045 | 0,047 | 29,880 | 29,980 | 29,900 | 29,980 | 29,940 | 29,980 |
| L 14 | $12 \mathrm{CGHE} / \mathrm{comb}$.-TC (2) | 29,955 | 0,047 | 0,050 | 29,880 | 30,000 | 29,930 | 30,000 | 29,980 | 29,940 |
| L 15 | 11 CGHE/comb.-IR (2) | 29,956 | 0,047 | 0,058 | 29,890 | 29,950 | 30,020 | 29,970 | 29,950 |  |
| L 16 | 33 CGHE/comb.-IR 3 | 30,033 | 0,067 | 0,071 | 29,960 | 29,980 | 30,030 | 30,110 | 30,000 | 30,120 |
| L 17 | 25 Comb./coul. 3 | 30,130 | 0,036 | 0,038 | 30,090 | 30,130 | 30,110 | 30,150 | 30,110 | 30,190 |


| Range [min..max] | [ 29,450 .. 30,190] |
| ---: | ---: |
|  | Case of No Pooling |
| Mean of means | 29,894 |
| 0,061 |  |
| $95 \%$ H.W. Confidence Interval | 0,337 |
| $95 \%$ H.W. Tolerance Interval | Case of Pooling |
|  | 29,894 |
| Mean of All | 0,030 |
| $9 \%$ H.W. Confidence Interval | 0,336 |

Outliers detected by different statistical tests at $a=1 \%$ level and at $a=5 \%$ level.
Abbreviations: $\mathrm{C}=$ Cochran test
D = Dixon test
$\mathrm{G}_{(\mathrm{s})}=$ Grubbs test (single test)
$\mathrm{N}=$ Nalimov t - test
POSSIBILITY TO POOL THE DATA
Snedecor F-test and Bartlett test show that pooling is: Not Allowed

Diagram of means and 95\% confidence intervals (to Tab. 6n2)


Tab. 601a : Free carbon evaluation in run 1 (values in $\mathrm{mg} / \mathrm{kg}$ ) (for information only)
Evaluation with all delivered results based on prescribed and non-prescribed methods.

| Current Lab number | Lab Abbreviation | $\begin{array}{r} \text { Mean } \\ (\mathrm{mg} / \mathrm{kg}) \end{array}$ | STDev | $\begin{array}{r} \text { H.W. CI } \\ (95 \%) \end{array}$ | Sample \#1 | Sample \#2 | Sample \#3 | Sample \#4 | Sample \#5 | Sample \#6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L 1 | $5 \mathrm{CGHE} / \mathrm{comb-IR}$ | 125 | 29 | 30 | 110 | 130 | 160 | 120 | 80 | 150 |
| L 2 | 31 CGHE/comb.-IR 3 | 159 | 22 | 23 | 135 | 167 | 161 | 182 | 131 | 178 |
| L 3 | 33 CGHE/comb.-IR3 | 206 | 59 | 62 | 187 | 187 | 164 | 178 | 192 | 325 |
| L 4 | 13 CGHE/comb.-IR3 | 255 | 55 | 57 | 322 | 282 | 215 | 283 | 169 | 258 |
| L 5 | 36 wet chemical oxidation/coul. 3 | 415 | 10 | 11 | 420 | 410 | 400 | 410 | 430 | 420 |
| L 6 | 26a comb./coul. 3 *) | 500 | 27 | 28 | 520 | 510 | 490 | 520 | 450 | 510 |
| L 7 | 32 comb./coul. 3 *) | 515 | 26 | 27 | 490 | 510 | 490 | 520 | 560 | 520 |
| L 8 | 26b wet chemical oxidation/coul. 3 | 540 | 28 | 30 | 510 | 530 | 540 | 590 | 520 | 550 |
| L 9 | 19 comb./coul. $1^{* *}$ ) | 608 | 33 | 35 | 590 | 570 | 650 | 620 | 580 | 640 |
| L 10 | 25 comb./coul. $3^{* *}$ ) | 617 | 75 | 79 | 700 | 600 | 600 | 500 | 700 | 600 |
| L 11 | 15 comb./coul. ${ }^{* *}$ ) | 643 | 60 | 62 | 660 | 670 | 580 | 740 | 590 | 620 |
| L 12 | 8 comb./coul. **) | 812 | 59 | 62 | 840 | 840 | 773 | 860 | 850 | 710 |
| L 13 | 9 CGHE/comb.-IR3 | 817 | 397 | 417 | 1300 | 500 | 1000 | 1000 | 200 | 900 |
| L 14 | $11 \mathrm{CGHE} / \mathrm{comb}$.-IR 2 | 1055 | 153 | 160 | 1260 | 1000 | 1150 | 1130 | 950 | 840 |


| ) by method M1 not by method M1 |  |
| ---: | ---: |
| Range [min..max] | [80 .. 1300] |
| Mean of means | Case of No Pooling |
| 519 |  |
| $95 \%$ H.W. Confidence Interval | 157 |
| $95 \%$ H.W. Tolerance Interval | 818 |
| Mean of All | Case of Pooling |
| 519 |  |
| $9 \%$ H.W. Confidence Interval | 62 |
| $95 \%$ H.W. Tolerance Interval | 647 |

Outliers detected by different statistical tests at $a=1 \%$ level and at $a=5 \%$ level.
Abbreviations: $\quad \mathrm{C}=$ Cochran test
D = Dixon test
$\mathrm{G}=$ Grubbs test (single and pair test)
$\mathrm{N}=$ Nalimov t - test
POSSIBILITY TO POOL THE DATA
Snedecor F-test and Bartlett test show that pooling is: Not Allowed

Diagram of means and $95 \%$ confidence intervals (to Tab. 601)


Tab. 601b: Free carbon evaluation in run 1 (values in $\mathrm{mg} / \mathrm{kg}$ ) (for information only)
Evaluation of results based on non-prescribed methods.

| Current Lab <br> number | Lab Abbreviation | Mean <br> $(\mathrm{mg} / \mathrm{kg})$ | STDe <br> v | H.W. CI <br> $(95 \%)$ | Sample <br> $\# 1$ | Sample <br> $\# 2$ | Sample <br> $\# 3$ | Sample <br> $\# 4$ | Sample <br> $\# 5$ |
| :--- | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| L 1 | 5 CGHE/comb-IR | 125 | 29 | 30 | 110 | 130 | 160 | 120 | 80 |
| L 2 | 31 CGHE/comb.-IR 3 | 159 | 22 | 23 | 135 | 167 | 161 | 182 | 131 |
| L 3 | 33 CGHE/comb.-IR 3 | 206 | 59 | 62 | 187 | 187 | 164 | 178 | 192 |
| L 4 | 13 CGHE/comb.-IR 3 | 255 | 55 | 57 | 322 | 282 | 215 | 283 | 169 |
| L 5 | 19 comb./coul. 1 | 608 | 33 | 35 | 590 | 570 | 650 | 620 | 580 |
| L 6 | 25 comb./coul. 3 | 617 | 75 | 79 | 700 | 600 | 600 | 500 | 700 |
| L 7 | 15 comb./coul. 3 | 643 | 60 | 62 | 660 | 670 | 580 | 740 | 590 |
| L 8 | 8 comb./coul.. | 812 | 59 | 62 | 840 | 840 | 773 | 860 | 620 |
| L 9 | 9 CGHE/comb.-IR 3 | 817 | 397 | 417 | 1300 | 500 | 1000 | 1000 | 200 |
| L 10 | 11 CGHE/comb.-IR 2 | 1055 | 153 | 160 | 1260 | 1000 | 1150 | 1130 | 950 |


| Range [min..max] | [80 .. 1300] |
| ---: | ---: |
|  | Mean of means |

Outliers detected by different statistical tests at $a=1 \%$ level and at $a=5 \%$ level.

$$
\begin{array}{ll}
\text { Abbreviations: } & \begin{array}{l}
\mathrm{C}
\end{array}=\text { Cochran test } \\
& \mathrm{D}=\text { Dixon test } \\
\mathrm{G} & =\text { Grubbs test (single and pair test) } \\
& \mathrm{N}=\text { Nalimov } \mathrm{t} \text { - test }
\end{array}
$$

POSSIBILITY TO POOL THE DATA
Snedecor F-test and Bartlett test show that pooling is: Not Allowed

Diagram of means and 95\% confidence intervals (to Tab. 601a)


## Tab. 601c: Free carbon accepted results in run 1 (values in $\mathrm{mg} / \mathrm{kg}$ ) (accepted results)

## Determined by the prescribed methods only:

*) Coulometric determination of free carbon content ( $\mathrm{C}_{\text {free }}$ ) in silicon carbide comprising weighing-back the sample boat $=$ Method M2 (APPENDIX 2)
${ }^{* *}$ ) Coulometric determination of free carbon ( $\mathrm{C}_{\text {free }}$ ) in silicon carbide by wet-chemical oxidation with hot chromic-sulfuric acid = Method M1 (APPENDIX 1)

| Current Lab number | Lab Abbreviation | Mean $\mathrm{mg} / \mathrm{kg}$ | STDev | $\begin{array}{r} \hline \text { H.W. Cl } \\ (95 \%) \\ \hline \end{array}$ | Sample \#1 | Sample \#2 | Sample \#3 | Sample \#4 | Sample \#5 | Sample \#6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L 1 | 36 oxidation / coul. $3^{* *}$ ) | 415 | 10 | 11 | 420 | 410 | 400 | 410 | 430 | 420 |
| L 2 | 26a comb,/coul. $3^{*}$ ) | 500 | 27 | 28 | 520 | 510 | 490 | 520 | 450 | 510 |
| L 3 | 32 comb,/coul. 3 *) | 515 | 26 | 27 | 490 | 510 | 490 | 520 | 560 | 520 |
| L 4 | 26b oxidation / coul. $3^{* *}$ ) | 540 | 28 | 30 | 510 | 530 | 540 | 590 | 520 | 550 |


| Range [min..max] | [400 .. 590] |
| ---: | ---: |
|  | Mean of means |

next page:
Outliers detected by different statistical tests at $a=1 \%$ level and at $a=5 \%$ level.
Abbreviations: $\quad \mathrm{C}=$ Cochran test
D = Dixon test
$\mathrm{G}=$ Grubbs test (single and pair test)
$\mathrm{N}=$ Nalimov t - test

POSSIBILITY TO POOL THE DATA
Snedecor F-test and Bartlett test show that pooling is: Not Allowed

Diagram of means and 95\% confidence intervals (to Tab. 601)


Tab. 6p1: Oxygen evaluation in run 1 (values in $\mathrm{mg} / \mathrm{kg}$ )

| Current Lab number | Lab Abbreviation | $\begin{array}{r} \text { Mean } \\ (\mathrm{mg} / \mathrm{kg}) \end{array}$ | STDev | $\begin{array}{r} \hline \text { H.W. CI } \\ (95 \%) \\ \hline \end{array}$ | Sample \#1 | Sample \#2 | Sample \#3 | Sample \#4 | Sample \#5 | Sample \#6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L 1 | 27 CGHE-IR | 825 | 16 | 17 | 820 | 820 | 810 | 810 | 850 | 840 |
| L 2 | 12 CGHE-IR2 | 845 | 23 | 24 | 815 | 877 | 836 | 857 | 826 | 857 |
| L 3 | 7 CGHE-IR | 862 | 1 | 1 | 861 | 862 | 861 | 863 | 862 | 863 |
| L 4 | 21 CGHE-IR2 | 865 | 18 | 19 | 837 | 871 | 866 | 877 | 887 | 849 |
| L 5 | 13 CGHE-IR3 | 873 | 19 | 20 | 880 | 849 | 871 | 895 | 890 | 851 |
| L 6 | 26 CGHE-IR3 | 902 | 12 | 12 | 910 | 900 | 920 | 900 | 890 | 890 |
| L 7 | 31 CGHE-IR3 | 915 | 11 | 12 | 919 | 926 | 916 | 907 | 924 | 896 |
| L 8 | 28 CGHE-IR1 | 948 | 3 | 3 | 950 | 950 | 946 | 948 | 950 | 942 |
| L 9 | 37 CGHE-IR3 | 951 | 27 | 29 | 993 | 935 | 968 | 919 | 958 | 932 |
| L 10 | 35 CGHE-IR1 | 988 | 37 | 39 | 1034 | 932 | 1007 | 1008 | 987 | 961 |
| L 11 | 19 CGHE-coul 1 | 1032 | 52 | 54 | 980 | 1000 | 1120 | 1000 | 1030 | 1060 |
| L 12 | 20 CGHE-IR2 | 1153 | 18 | 18 | 1160 | 1130 | 1180 | 1160 | 1150 | 1140 |


| Range [min..max] | [810 .. 1180 ] |
| :---: | :---: |
|  | Case of No Pooling |
| Mean of means | 930 |
| 95\% H.W. Confidence Interval | 59 |
| 95\% H.W. Tolerance Interval | 295 |
|  | Case of Pooling |
| Mean of All | 930 |
| 95\% H.W. Confidence Interval | 22 |
| 95\% H.W. Tolerance Interval | 213 |

Outliers detected by different statistical tests at $a=1 \%$ level and at $a=5 \%$ level.

```
Abbreviations: \(\quad \mathrm{C}=\) Cochran test
D = Dixon test
\(\mathrm{G}_{(\mathrm{s})}=\) Grubbs test (single test)
\(\mathrm{N}^{\mathrm{s})}=\) Nalimov t - test
```

POSSIBILITY TO POOL THE DATA
Snedecor F-test and Bartlett test show that pooling is: Not Allowed
Diagram of means and 95\% confidence intervals (to Tab. 6p1)


Tab. 6p2: Oxygen accepted results in run 2 (values in $\mathrm{mg} / \mathrm{kg}$ )

| Current Lab number | Lab Abbreviation | $\begin{array}{r} \text { Mean } \\ (\mathrm{mg} / \mathrm{kg}) \end{array}$ | STDev | $\begin{array}{r} \hline \text { H.W. CI } \\ (95 \%) \\ \hline \end{array}$ | Sample \#1 | Sample \#2 | Sample \#3 | Sample \#4 | Sample \#5 | Sample \#6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L 1 | 27 CGHE-IR | 825 | 16 | 17 | 820 | 820 | 810 | 810 | 850 | 840 |
| L 2 | 12 CGHE-IR 2 | 845 | 23 | 24 | 815 | 877 | 836 | 857 | 826 | 857 |
| L 3 | 7 CGHE-IR | 862 | 1 | 1 | 861 | 862 | 861 | 863 | 862 | 863 |
| L 4 | 21 CGHE-IR 2 | 865 | 18 | 19 | 837 | 871 | 866 | 877 | 887 | 849 |
| L 5 | 13 CGHE-IR 3 | 873 | 19 | 20 | 880 | 849 | 871 | 895 | 890 | 851 |
| L 6 | 26 CGHE-IR 3 | 902 | 12 | 12 | 910 | 900 | 920 | 900 | 890 | 890 |
| L 7 | 31 CGHE-IR 3 | 915 | 11 | 12 | 919 | 926 | 916 | 907 | 924 | 896 |
| L 8 | 28 CGHE-IR 1 | 948 | 3 | 3 | 950 | 950 | 946 | 948 | 950 | 942 |
| L 9 | 37 CGHE-IR 3 | 951 | 27 | 29 | 993 | 935 | 968 | 919 | 958 | 932 |
| L 11 | 35 CGHE-IR 1 | 988 | 37 | 39 | 1034 | 932 | 1007 | 1008 | 987 | 961 |
| L 12 | 19 CGHE/coul. 1 | 1032 | 52 | 54 | 980 | 1000 | 1120 | 1000 | 1030 | 1060 |


| Range [min..max] | [810 .. 1120] |
| ---: | ---: |
|  | Mean of means |

Outliers detected by different statistical tests at $a=1 \%$ level and at $a=5 \%$ level.
Abbreviations:
C = Cochran test
D = Dixon test
$\mathrm{G}=\mathrm{Grubbs}$ test (single and pair test)
$\mathrm{N}=$ Nalimov t-test
POSSIBILITY TO POOL THE DATA
Snedecor F-test and Bartlett test show that pooling is: Not Allowed

Diagram of means and 95\% confidence intervals (to Tab. 6p2)


Tab. 6q1: Nitrogen accepted results in run 1 (values in $\mathbf{m g} / \mathrm{kg}$ )

| Current Lab <br> number | Lab Abbreviation | Mean <br> $(\mathrm{mg} / \mathrm{kg})$ | STDev | H.W. CI <br> $(95 \%)$ | Sample <br> $\# 1$ | Sample <br> $\# 2$ | Sample <br> $\# 3$ | Sample <br> $\# 4$ | Sample <br> $\# 5$ |
| :--- | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| L 1 | 37 CGHE-TC | 47 | 6 | 6 | 42 | 46 | 43 | 55 | 52 |
| L 2 | 26 CGHE-TC | 59 | 8 | 8 | 55 | 64 | 67 | 67 | 52 |
| L 3 | 21 CGHE-TC 2 | 64 | 4 | 4 | 61 | 60 | 68 | 61 | 68 |
| L 4 | 12 CGHE-TC 2 | 80 | 11 | 11 | 70 | 70 | 80 | 80 | 80 |
| L 5 | 7 CGHE-TC | 89 | 4 | 5 | 84 | 93 | 88 | 88 | 95 |
| L 6 | 29 CGHE-TC | 89 | 4 | 4 | 93 | 84 | 86 | 92 | 91 |
| L 7 | 36 CGHE-TC 3 | 94 | 6 | 7 | 95 | 98 | 103 | 88 | 86 |
| L 8 | 19 CGHE-TC | 99 | 5 | 6 | 95 | 95 | 106 | 105 | 94 |
| L 9 | 28 CGHE-TC 1 | 115 | 3 | 3 | 111 | 116 | 117 | 112 | 118 |
| L 10 | 13 CGHE-TC | 128 | 5 | 5 | 134 | 128 | 132 | 122 | 124 |
| L 11 | 35 CGHE-TC | 151 | 12 | 12 | 135 | 146 | 162 | 142 | 156 |


| Range [min..max] | [42 .. 164 ] |
| ---: | ---: |
|  | Mean of means |

Outliers detected by different statistical tests at $a=1 \%$ level and at $a=5 \%$ level.
Abbreviations: $\quad \mathrm{C}=$ Cochran test
D = Dixon test
G = Grubbs test (single and pair test)
$\mathrm{N}=$ Nalimov t - test
POSSIBILITY TO POOL THE DATA
Snedecor F-test and Bartlett test show that pooling is: Not Allowed

Diagram of means and 95\% confidence intervals (to Tab. 6q1)


Tab. 6r1: Free silicon accepted results in run 1 (values in $\mathbf{m g} / \mathrm{kg}$ )

| Current Lab. <br> number | Lab Abbreviation | Mean <br> $(\mathrm{mg} / \mathrm{kg})$ | STDev | H.W. CI <br> $(95 \%)$ | Sample <br> $\# 1$ | Sample <br> $\# 2$ | Sample <br> $\# 3$ | Sample <br> $\# 4$ | Sample <br> $\# 5$ | Sample <br> $\# 6$ |
| :---: | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| L 1 | 16 coulorimetry 3 | 117 | 19 | 20 | 120 | 120 | 130 | 100 | 89 | 140 |
| L 2 | 26 gas-volumetry 3 | 398 | 33 | 34 | 410 | 420 | 340 | 380 | 420 | 420 |
| L 3 | 15 combustion 3 | 400 | 0 | 0 | 400 | 400 | 400 | 400 | 400 | 400 |
| L 4 | 32 volumetry 3 | 468 | 39 | 41 | 450 | 470 | 530 | 470 | 480 | 410 |
| L 5 | 6 volumetry | 550 | 315 | 330 | 500 | 500 | 800 | 1000 | 400 | 100 |
| L6 | 11 volumetry 2 | 950 | 84 | 88 | 900 | 1000 | 900 | 900 | 900 | 1100 |


| Range [min..max] | [89..1100] |
| ---: | ---: |
|  | Mean of means |

Outliers detected by different statistical tests at $a=1 \%$ level and at $a=5 \%$ level.
Abbreviations: $\quad \mathrm{C}=$ Cochran test
D = Dixon test
$\mathrm{G}=$ Grubbs test (single and pair test)
$\mathrm{N}=$ Nalimov t - test
POSSIBILITY TO POOL THE DATA
Snedecor F-test and Bartlett test show that pooling is: Not Allowed

## Diagram of means and 95\% confidence intervals (to Tab. 6r1)



Tab. 6s1: Free silicon dioxide accepted results in run 1 (values in $\mathbf{m g} / \mathbf{k g}$ )

| Current Lab. number | Lab Abbreviation | $\begin{array}{r} \text { Mean } \\ (\mathrm{mg} / \mathrm{kg}) \end{array}$ | STDev | $\begin{array}{r} \text { H.W. CI } \\ (95 \%) \end{array}$ | Sampl e \#1 | Sampl e \#2 | $\begin{array}{r} \text { Sampl } \\ \text { e \#3 } \\ \hline \end{array}$ | Sampl e \#4 | Sampl e \#5 | Sampl e \#6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L 1 | 32 volumetry 3 | 488 | 101 | 106 | 530 | 390 | 630 | 480 | 540 | 360 |
| L 2 | 33 colorimetry 3 | 552 | 44 | 46 | 540 | 520 | 540 | 640 | 530 | 540 |
| L 3 | 16 colorimetry 3 | 583 | 27 | 29 | 590 | 570 | 630 | 590 | 550 | 570 |
| L 4 | 8 ICP OES 3 | 608 | 38 | 39 | 650 | 570 | 590 | 600 | 580 | 660 |
| L 5 | 26 ICP OES 3 | 632 | 49 | 51 | 670 | 670 | 650 | 580 | 560 | 660 |
| L 6 | 6 gravimetry 3 | 733 | 388 | 407 | 400 | 500 | 1400 | 1000 | 500 | 600 |


| Range [min..max] | [ 360 .. 1400] |
| ---: | ---: |
|  | Mean of means |

Outliers detected by different statistical tests at $a=1 \%$ level and at $a=5 \%$ level.
Abbreviations: $\quad \mathrm{C}=$ Cochran test
D = Dixon test
$\mathrm{G}=$ Grubbs test (single and pair test)
$\mathrm{N}=$ Nalimov t - test
POSSIBILITY TO POOL THE DATA
Snedecor F-test and Bartlett test show that pooling is: Not Allowed

Diagram of means and $95 \%$ confidence intervals (to Tab. 6s1)


Appendix 8: Additional information to the Grubbs tests carried out for the interlaboratory comparison for the certification of CRM BAM-S003

| Parameter | Evaluation | test | Comments |
| :---: | :---: | :---: | :---: |
| AI | run 1 | single test | L1, $\rightarrow$ outlier at 1\%,5\% level |
|  |  | pair test | no pair test calculated |
|  | run 2 | single test | outlier NOT detected |
|  |  | pair test | L1, L2 $\rightarrow$ outlier NOT detected L 17, L $18 \rightarrow$ outlier NOT detected |
| B | run 1 | single test | L13 $\rightarrow$ outlier at 5\% level |
|  |  | pair test | L1, L2 $\rightarrow$ outlier NOT detected L12, L13 $\rightarrow$ outlier at $1 \%$ and 5\% level |
|  | run 2 | single test | outlier NOT detected |
|  |  | pair test | L1, L2 $\rightarrow$ outlier at 5\% level |
| Ca | run 1 | single test | L17 $\rightarrow$ outlier at 1\% and 5\% level |
|  |  | pair test | L1, L2 $\rightarrow$ outlier NOT detected L16, L17 $\rightarrow$ outlier at $1 \%$ and 5\% level |
|  | run 2 | single test | L1 $\rightarrow$ outlier at 5\% level |
|  |  | pair test | L1, L2 $\rightarrow$ outlier NOT detected L14, L15 $\rightarrow$ outlier NOT detected |
| Cr | run 1 | single test | L17 $\rightarrow$ outlier at 5\% level |
|  |  | pair test | L1, L2 $\rightarrow$ outlier NOT detected L16, L17 $\rightarrow$ outlier at $5 \%$ level |
|  | run 2 | single test | outlier NOT detected |
|  |  | pair test | L1, L2 $\rightarrow$ outlier NOT detected L15, L16 $\rightarrow$ outlier NOT detected |
| Cu | run 1 | single test | L13 $\rightarrow$ outlier at 1\%, 5\% level |
|  |  | pair test | no pair test calculated |
|  | run 2 | single test | outlier NOT detected |
|  |  | pair test | L1, L2 $\rightarrow$ outlier NOT detected <br> L11, L12 $\rightarrow$ outlier at $1 \%$ and $5 \%$ level |
| Fe | run 1 | single test | L24 $\rightarrow$ outlier at 1\%, 5\% level |
|  |  | pair test | no pair test calculated |
|  | run 2 | single test | L1 $\rightarrow$ outlier at 5\% level |
|  |  | pair test | L1, L2 $\rightarrow$ outlier NOT detected L21, L22 $\rightarrow$ outlier NOT detected |
|  | run 3 | single test | outlier NOT detected |
|  |  | pair test | L1, L2 $\rightarrow$ outlier NOT detected L20, L21 $\rightarrow$ outlier NOT detected |
| Mg | run 1 | single test | L19 $\rightarrow$ outlier at 1\% and 5\% level |
|  |  | pair test | L1, L2 $\rightarrow$ outlier NOT detected L18, L19 $\rightarrow$ outlier at $1 \%$ and $5 \%$ level |
|  | run 2 | single test | outlier NOT detected |
|  |  | pair test | L1, L2 $\rightarrow$ outlier NOT detected L16, L17 $\rightarrow$ outlier at $5 \%$ level |
| Mn | run 1 | single test | L18 $\rightarrow$ outlier at 5\% level |
|  |  | pair test | L1, L2 $\rightarrow$ outlier NOT detected L17, L18 $\rightarrow$ outlier at $1 \%$ and 5\% level |
|  | run 2 | single test | outlier NOT detected |
|  |  | pair test | L1, L2 $\rightarrow$ outlier NOT detected L16, L17 $\rightarrow$ outlier NOT detected |
| Na | run 1 | single test | L1 $\rightarrow$ outlier at 5\% level |
|  |  | pair test | L1, L2 $\rightarrow$ outlier NOT detected L17, L18 $\rightarrow$ outlier NOT detected |
|  | run 2 | single test | L16 $\rightarrow$ outlier at 5\% level |
|  |  | pair test | L1, L2 $\rightarrow$ outlier NOT detected L15, L16 $\rightarrow$ outlier NOT detected |
|  | run 3 | single test | outlier NOT detected |
|  |  | pair test | L1, L2 $\rightarrow$ outlier NOT detected L13, L14 $\rightarrow$ outlier NOT detected |


| Parameter | Evaluation | test | Comments |
| :---: | :---: | :---: | :---: |
| Ni | run 1 | single test | outlier NOT detected |
|  |  | pair test | L1, L2 $\rightarrow$ outlier NOT detected L21, L22 $\rightarrow$ outlier NOT detected |
| Ti | run 1 | single test | L1 $\rightarrow$ outlier at 1\% and 5\% level |
|  |  | pair test | no pair test calculated |
|  | run 2 | single test | outlier NOT detected |
|  |  | pair test | L1, L2 $\rightarrow$ outlier NOT detected L18, L19 $\rightarrow$ outlier NOT detected |
| V | run 1 | single test | outlier NOT detected |
|  |  | pair test | L1, L2 $\rightarrow$ outlier NOT detected L18, L19 $\rightarrow$ outlier NOT detected |
| V | run 2 | single test | outlier NOT detected |
|  |  | pair test | L1, L2 $\rightarrow$ outlier NOT detected L17, L18 $\rightarrow$ outlier NOT detected |
| Zr | run 1 | single test | outlier NOT detected |
|  |  | pair test | L1, L2 $\rightarrow$ outlier NOT detected L19, L20 $\rightarrow$ outlier NOT detected |
|  | run 2 | single test pair test | outlier NOT detected <br> L1, L2 $\rightarrow$ outlier NOT detected <br> L18, L19 $\rightarrow$ outlier NOT detected |
| $\mathrm{C}_{\text {total }}$ | run 1 | single test | L1 $\rightarrow$ outlier at 5\% level |
|  |  | pair test | L1, L2 $\rightarrow$ outlier at $1 \%$ and 5\% level L18, L19 $\rightarrow$ outlier NOT detected |
|  | run 2 | single test pair test | L1 $\rightarrow$ outlier at $5 \%$ level L1, L2 $\rightarrow$ outlier at $1 \%$ and $5 \%$ level L16, L17 $\rightarrow$ outlier NOT detected |
| $\mathrm{C}_{\text {free }}$ with all results | run 1 | single test | outlier NOT detected |
|  |  | pair test | L1, L2 $\rightarrow$ outlier NOT detected L3, L4 $\rightarrow$ outlier NOT detected |
| $\mathrm{C}_{\text {free }}$ without Lab. of experts | run 1 | single test | outlier NOT detected |
|  |  | pair test | L1, L2 $\rightarrow$ outlier NOT detected L3, L4 $\rightarrow$ outlier NOT detected |
| $\mathrm{C}_{\text {free }}$ experts | run 1 | single test | outlier NOT detected |
|  |  | pair test | L1, L2 $\rightarrow$ outlier NOT detected L3, L4 $\rightarrow$ outlier NOT detected |
| O | run 1 | single test | L12 $\rightarrow$ outlier at 5\% level |
|  |  | pair test | L1, L2 $\rightarrow$ outlier NOT detected L11, L12 $\rightarrow$ outlier at $5 \%$ level |
|  | run 2 | single test | outlier NOT detected |
|  |  | pair test | L1, L2 $\rightarrow$ outlier NOT detected L10, L11 $\rightarrow$ outlier NOT detected |
| N | run 1 | single test | outlier NOT detected |
|  |  | pair test | L1, L2 $\rightarrow$ outlier NOT detected L10, L11 $\rightarrow$ outlier NOT detected |
| Sifiree | run 1 | single test | outlier NOT detected |
|  |  | pair test | L1, L2 $\rightarrow$ outlier NOT detected L5, L6 $\rightarrow$ outlier NOT detected |
| $\mathrm{SiO}_{2}$-free | run 1 | single test | outlier NOT detected |
|  |  | pair test | L1, L2 $\rightarrow$ outlier NOT detected L5, L6 $\rightarrow$ outlier NOT detected |


[^0]:    Tab. 1: Participating laboratories (arranged alphabetically)
    BAM, Bundesanstalt für Materialforschung und -prüfung Berlin (Germany)

    - Laboratory: Activation Analysis; Gas Analysis
    - Project group: Quality Assurance and Metrological Aspects in Production of High Tech Reference materials
    Chinese Academy of Sciences, Shanghai Institute of Ceramics, Analysis and Testing Center for Inorganic Materials, Shanghai (PR China)
    CRB GmbH, Hardegsen (Germany)
    DIFK Deutsches Institut für Feuerfest und Keramik GmbH, Bonn (Germany)
    Elektroschmelzwerk Delfzijl B.V., TE Farmsum (Netherlands)

